Leah Johnston, MD1; Susan Poelman, MSc, MD, FRCPC2,3; Andrei Metelitsa, MD, FRCPC2,3
1Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
2Division of Dermatology, University of Calgary, Calgary, AB, Canada
3Beacon Dermatology, Calgary, AB, Canada
Conflict of interest: Leah Johnston does not have any conflicts of interest to disclose. Andrei Metelitsa has been an advisor and speaker for AbbVie, Eli Lilly, Galderma, Leo, Pfizer, Sanofi. Susan Poelman has been an advisor and speaker for AbbVie, Eli Lilly, Galderma, Leo, Pfizer, Sanofi.
Funding sources: None.
Abstract:
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease that impacts approximately 10-15% of the population in the United States and Canada. Lebrikizumab is a novel systemic human monoclonal immunoglobulin G4 antibody that inhibits the activity of interleukin-13. In June 2024, lebrikizumab was approved by Health Canada for the treatment of moderate-to-severe AD in adults and adolescents who are 12 years of age and older, followed by US Food and Drug Administration approval in September 2024. This review provides an overview of data from clinical trials on the efficacy and safety of lebrikizumab in adult patients.
Keywords:atopic dermatitis, lebrikizumab, interleukin-13, IL-13, biologics, eczema, dermatitis
Introduction
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease that presents with pruritic, erythematous, eczematous patches and plaques that has a predilection for flexural sites. The estimated prevalence of AD in Canada and the United States is 8-16% in adolescents aged 12-17 years and 2-11% in adults.1-7 Approximately 40% of AD patients have moderate-to-severe disease.7 AD has a significant negative impact on quality of life in individuals with the condition and is associated with increased rates of anxiety, depression, and sleep disturbances.8 Additionally, AD can be costly to manage for both patients and the healthcare system at large, and previous studies have found that AD has a major adverse impact on workplace productivity and absenteeism.8
First-line treatments for AD include emollients with use of wet wraps and topical agents including corticosteroids, calcineurin inhibitors, phosphodiesterase-4 inhibitors, and Janus kinase (JAK) inhibitors.9 Patients who do not achieve an adequate improvement with topical therapies alone or have severe, widespread AD at baseline may require narrowband phototherapy or systemic therapies to improve disease control.10 Currently, three monoclonal antibodies and two small molecule inhibitors have received Health Canada approval for the treatment of moderate-to-severe AD (Table 1).10 This review presents efficacy and safety data from clinical trials of lebrikizumab, the most recently approved treatment for AD in patients ≥12 years of age.
Table 1
Mechanism of Action
AD has numerous predisposing genetic and environmental factors that lead to a predominantly T‐helper type 2 (Th2) cell and type 2 innate lymphoid cell (ILC2)‐driven inflammatory response. Activation of Th2 and ILC2 cells leads to an increase in type 2 inflammatory cytokines, including interleukin (IL)‐4, IL‐5, IL‐13, and IL‐31.11 IL‐4 is thought to primarily exert central effects by regulating the development of immune cells, such as Th2 cells, and promoting production of immunoglobulin E (IgE) by B cells. Conversely, IL‐13 primarily acts in the periphery and both cytokines are implicated in the pathogenesis of AD.12 IL‐13 is overexpressed in AD lesions and non‐lesional skin compared to healthy controls and levels of IL‐13 in lesional skin correlate with AD severity.12 IL‐4 and IL‐13 also contribute to cutaneous microbial dysbiosis and disruption of the skin barrier, with IL‐13 predominantly stimulating decreases in antimicrobial peptide and filaggrin protein levels and increasing local expression of IgE and migration of eosinophils.11,13 Both IL‐4 and IL‐13 can bind to IL‐13 receptor α1 (IL‐13Rα1), inducing the formation of a heterodimeric receptor with the IL‐4 receptor α (IL‐4Rα) subunit and subsequently activating downstream JAK1 and tyrosine kinase 2 (TYK2)‐mediated pro‐inflammatory pathways.11 IL‐13 also binds to IL‐13Rα2, which plays a negative regulatory role by stimulating IL‐13 degradation.12‐14 Different IL‐13Rα2 receptor epitopes affect IL‐13 clearance rates, which has been observed in asthma studies.12 Dupilumab binds to IL‐4Rα in IL‐4Rα/IL‐13Rα1 receptor complexes and decreases receptor signaling.11,15 Although both lebrikizumab and tralokinumab are monoclonal antibodies that bind to IL‐13, lebrikizumab is known to have the highest binding affinity for IL‐13.12 Lebrikizumab‐bound IL‐13 can still bind to IL‐13Rα1, but formation of IL‐4Rα/IL‐13Rα1 receptor complexes is blocked by lebrikizumab (Figure 1). Tralokinumab prevents IL‐13 from binding to IL‐13Rα1, which also subsequently inhibits IL‐4Rα/IL‐ 13Rα1 heterodimerization.11,12,16 Tralokinumab also inhibits binding of IL‐13 to IL‐13Rα2, which does not occur with lebrikizumab.12 In contrast, lebrikizumab‐bound IL‐13 is transported intracellularly after binding to Il‐13Rα2, where it co‐localizes and is subsequently degraded by lysosomes.12 This mechanism promotes for clearance of IL‐13, while the underlying mechanism of tralokinumab inhibits this process and may lead to persistence of elevated IL‐13 levels.12
Figure 1
Production, Administration, Ingredients, Storage and Dosing
Lebrikizumab is a humanized IgG4 monoclonal antibody that consists of two identical heavy gamma chains and two identical light chains.17 Recombinant DNA technology is used to produce lebrikizumab in Chinese Hamster Ovary cells.17
Lebrikizumab is administered via subcutaneous (SC) 125 mg/mL (250 mg in 2 mL sterile solution) injections using either pre‐filled syringes or pre‐filled pens.17 The sterile solution in lebrikizumab is comprised of acetic acid, histidine, polysorbate 20, sucrose, and water. The medication should be stored in a refrigerator with a temperature between 2 and 8 degrees Celsius.
The initial loading dose of lebrikizumab is 500 mg (two injections) at baseline and 2 weeks,17 followed by administration every 2 weeks in 250 mg SC doses until 16 weeks. After 16 weeks, the dosing frequency can be decreased to every 4 weeks.17 In some cases, patients who achieved partial responses may be recommended to continue 250 mg every 2 weeks until 24 weeks.18
Pharmacokinetics
Serum levels of lebrikizumab peak at 7-8 days after SC injections and the estimated bioavailability is 86%.17,19 Metabolism of lebrikizumab is theorized to occur through the same protein catabolism pathways that typically degrade endogenous antibodies.19,20 No dose adjustments are required for patients with hepatic or renal insufficiency, or geriatric patients (≥65 years of age).17
Contraindications to Lebrikizumab
Lebrikizumab is contraindicated in patients with known allergies or hypersensitivity to any ingredients in its formulation.17 Clinical trials for lebrikizumab have not been conducted in pediatric patients <12 years of age or >12 years who weigh less than 40 kg, and therefore, it is not currently approved by Health Canada for use in these individuals.17 Lebrikizumab is not currently recommended in pregnant individuals due to a lack of safety data in humans.17 As lebrikizumab is an IgG4 antibody, it is able to cross the placenta. However, studies in pregnant monkeys that tested lebrikizumab at exposure levels that were 18 to 22‐fold higher than the dosages used in humans, no adverse fetal effects were observed.17 Fetal serum levels of lebrikizumab were approximately 30% of maternal serum levels.17 Recent clinical practice guidelines suggest that dupilumab is likely to be safe during pregnancy and other biologics targeting similar pathways are expected to have similar pregnancy safety profiles, though this conclusion cannot be drawn due to the current lack of safety data.21
Clinician-Reported Efficacy Data from Phase 2 and 3 Clinical Trials in AD
Three phase 2 clinical trials have been conducted to evaluate the efficacy of lebrikizumab in adults with moderate-to-severe AD (Table 2).16,22,23 Following completion of phase 2 trials, which demonstrated efficacy for improving AD as well as high safety and tolerability, six phase 3 clinical trials of lebrikizumab have been completed.24-31 Additional long-term phase 3 efficacy and safety trials are currently being conducted.32,33
Table 2
The ADvocate1 (NCT04146363) and ADvocate2 (NCT04178967) monotherapy, randomized, phase 3 placebo-controlled trials further demonstrated the efficacy of lebrikizumab as a treatment for AD.24-26 The ADvocate trials enrolled both adolescents ≥12 years of age and adults.24-26 The primary outcome in both trials was the proportion of participants who achieved an Investigator Global Assessment score (IGA) of 0 or 1 at 16 weeks, representing complete or near complete clearance of AD.24 The secondary efficacy outcome was the proportion of participants who achieved Eczema Area and Severity Index (EASI)-75, indicating ≥75% improvement from baseline, at 16 weeks. In ADvocate1, 43.1% of the lebrikizumab group and 12.7% of the placebo group achieved an IGA score of 0 or 1 at 16 weeks (P < 0.001).24 EASI-75 was achieved by 58.8% and 16.2%, respectively (P < 0.001).24 In ADvocate2, 33.2% of the lebrikizumab group and 10.8% of the placebo group had IGA 0/1 scores at 16 weeks (P < 0.001), and EASI-75 was achieved in 52.1% and 18.1%, respectively (P < 0.001).24 After 16 weeks, patients in the ADvocate1 and ADvocate2 trials who received treatment with lebrikizumab were randomized to either continue 250 mg every 2 weeks, switch to lebrikizumab 250 mg every 4 weeks, or discontinue treatment with lebrikizumab.25 The primary efficacy endpoint, IGA 0/1, was maintained in 71.2% of the lebrikizumab every 2 weeks group, 76.9% of the lebrikizumab every 4 weeks group, and 47.9% of the group that was switched to placebo after week 16.26 The group that received lebrikizumab 250 mg every 4 weeks had the highest proportion of participants who maintained EASI-75 at the end of 52 weeks of treatment (81.7%), compared to 78.4% of patients in the lebrikizumab 250 mg every 2 weeks group and 66.4% of the lebrikizumab discontinuation group.25 No fluctuations in maintenance of EASI-75 occurred in 70.8% of the lebrikizumab every 2 weeks group, 71.2% of the lebrikizumab every 4 weeks group, and 60.0% of the lebrikizumab withdrawal group.26 During the maintenance treatment period (weeks 16 to 52) in the ADvocate1 and ADvocate2 trials, 12.4% of the lebrikizumab every 2 weeks group, 16.1% of the lebrikizumab every 4 weeks group, and 18.3% of the lebrikizumab withdrawal group required treatment with topical therapies to optimize control of their AD.25
The ADhere trial (NCT04250337) was a 16‐week, phase 3 randomized, placebo‐controlled trial of lebrikizumab, combined with low to mid‐potency topical corticosteroids and/or topical calcineurin inhibitors, which participants were instructed to use on an as‐needed basis.27 The primary endpoint, attainment of IGA 0/1 at 16 weeks, occurred in 41.2% of patients in the lebrikizumab 250 mg every 2 weeks group and 22.1% of the placebo injection group (P = 0.01).27 EASI‐75 was achieved in 69.5% of lebrikizumab and 42.2% of placebo group patients (P < 0.001).27 The mean proportion of topical therapy‐free days at 16 weeks was numerically greater in the lebrikizumab group, but this difference was not statistically significant.27
The ADjoin (NCT04392154) trial is a phase 3, long-term, efficacy and safety trial that is pending completion. Preliminary data from this trial demonstrated that 76% of the ADvocate1 and ADvocate2 trial participants and 79% of the ADhere trial participants maintained IGA 0/1 after 2 years of treatment with lebrikizumab at 250 mg every 4 weeks maintenance dosing.28 This data suggests that lebrikizumab is an effective long-term therapy for maintaining complete or near-complete clearance of AD in patients who have optimal responses at 16 weeks.28
Clinician-Reported Efficacy Data from Phase 3 Trials in Pediatric Patients with AD
The ADore trial (NCT04250350) analyzed the effects of lebrikizumab exclusively in adolescent patients between 12 and 17 years of age with moderate‐to‐severe AD.29 Patients received 500 mg loading doses of lebrikizumab at baseline and week 2, followed by 250 mg every 2 weeks throughout the 52‐week trial.29 The primary endpoint was safety and the proportion of participants who discontinued lebrikizumab due to adverse events. At 4 weeks, 28.6% of patients achieved EASI‐75, which rose to 73.2% at week 16 and continued to steadily increase to 81.9% at the end of the 52‐week trial.29 IGA 0/1 was achieved in 14.4% at week 4, 46.3% at week 16, and 62.6% at week 52.29 Rescue therapies were needed in 27.2% of participants.29 The ADorabale‐1 (NCT05559359) and ADorable‐2 (NCT05735483) trials, two phase 3 placebo‐controlled randomized controlled trials (RCTs) in children aged ≥6 months, are currently in progress.32,33
Subset efficacy analyses from the ADvocate1, ADvocate2, and ADhere trials found that data collected from adolescent patients were consistent with overall population outcomes.30
Effects of Lebrikizumab on Vaccine-Induced Immune Responses
The ADOPT-VA trial (NCT04626297) was a phase 3 placebo-controlled RCT that was conducted to analyze responses to non-live vaccines in patients receiving treatment for AD with lebrikizumab.31 No differences in response rates between the lebrikizumab and placebo groups were observed following the meningococcal conjugate vaccine and the tetanus toxoid booster vaccine.31 Improvements in AD severity and symptoms were similar to results from other lebrikizumab trials.31
It is recommended that patients receive age-appropriate live vaccinations prior to starting lebrikizumab, as they are contraindicated during treatment.17
Patient‐Reported Outcomes
Across published phase 2 and 3 trials, patients who received lebrikizumab 250 mg every 2 weeks had significantly higher rates of achieving a ≥4‐point decrease in Pruritus Numerical Rating Scale severity scores compared to the placebo groups.16,24,27,31 At 52 weeks, more than 60% of participants in the ADvocate1 and ADvocate2 trials maintained this improvement.26 Additionally, sleep loss and the interference of pruritus with sleep were significantly better with lebrikizumab compared to placebo,34 Furthermore, these improvements were associated with higher Dermatology Life Quality Index ratings.35 Patients in the ADvocate1 and ADvocate2 trials who received treatment with lebrikizumab also experienced significant improvements in depression and anxiety ratings compared to placebo.36
Safety Data
A pooled safety analysis of the eight clinical trials of lebrikizumab for AD found that the rates of adverse events (AEs) were 49.2% in participants who were treated with lebrikizumab 250 mg every 2 weeks and 53.1% in participants who received treatment with a placebo, of which 2.3% and 4.4% were classified as severe AEs, respectively.37 AEs leading to treatment discontinuation occurred in 2.3% of lebrikizumab 250 mg every 2 weeks and 1.4% of placebo group participants.37
Conjunctivitis was the most common treatment-emergent adverse event (TEAE) in the lebrikizumab groups (6.5%).37 Allergic conjunctivitis was reported in 1.8% of the lebrikizumab 250 mg every 2 weeks groups and in the TREBLE RCT, more than half (53%, n=8/15) of all instances of conjunctivitis were allergy-related.22,37 Approximately 20% of patients in both the lebrikizumab and placebo groups had a past history of conjunctivitis at baseline, but only 1.8% of the placebo groups developed the condition during the trials.37 Targeting IL-13 signaling is theorized to interfere with maintenance of the conjunctival mucosa by decreasing levels of conjunctival goblet cells, thereby increasing the risk of conjunctivitis.37 Other TEAEs that were more common in participants who received lebrikizumab included nasopharyngitis (4.4%), headache (4.4%), dry eye (1.4%), allergic rhinitis (1.0%), and injection site reactions (2.5%).37 No participants developed anaphylaxis or hypersensitivity reactions.37 Eosinophilia occurred more frequently in the placebo groups (0.8%) than the lebrikizumab every 2 weeks groups (0.6%).37
The lebrikizumab every 2 weeks groups developed herpes zoster (0.6%) and herpes simplex (0.3%) infections at higher rates compared to the placebo groups, in which no cases were reported.37 Eczema herpeticum was not reported in patients receiving lebrikizumab every 2 weeks, while the incidence was 0.7% in the placebo groups.37 Lebrikizumab could theoretically increase the risk of helminth infections, though this was not observed in the lebrikizumab every 2 weeks trial groups.17,37 No confirmed opportunistic infections occurred in any of the lebrikizumab or placebo groups.
Non‐melanoma skin cancers (NMSC) occurred in 0.3% of the lebrikizumab 250 mg every 2 week groups and 0.5% of the placebo groups.37 No other malignancies were observed during the 16‐week trial period in the lebrikizumab 250 mg every 2 weeks and placebo groups.37 In a pooled analysis of all participants who received lebrikizumab with any dosing protocol (including a single dose at baseline), 0.3% of participants developed NMSC and 0.4% developed other malignancies, including prostate cancer (n=1), cutaneous T‐cell lymphoma (n=2), endometrial adenocarcinoma (n=1), invasive breast cancer (n=1), a neuroendocrine tumor (n=1), and metastatic pancreatic carcinoma (n=1).37 All malignancies were classified as unrelated to lebrikizumab by the study investigators and were similar to expected malignancy rates.37
Data from Clinical Trials for Asthma
Asthma is a common comorbidity of AD and in patients with both moderate‐to‐severe asthma and AD, consideration should be given to systemic therapies that can optimize management of both conditions. Some phase 2 and 3 trials of lebrikizumab found reductions in rates of asthma exacerbations and hospitalizations in adolescents and adults with poorly controlled asthma, though other studies have failed to demonstrate consistently significant results.38‐40
Efficacy Comparison of Lebrikizumab to Other Biologics and Small Molecule Inhibitors for AD
A 2024 network meta‐analysis of RCTs that investigated biologics and small molecule inhibitors for moderate‐to‐severe AD found that lebrikizumab, along with dupilumab and tralokinumab, had intermediate efficacy and the most favorable safety profiles.41 While JAK inhibitors, including upadacitinib and abrocitinib, have demonstrated the highest efficacy in improving AD, they were associated with significantly higher rates of AEs. Compared to dupilumab, lebrikizumab has shown a slightly reduced but non‐significant difference in reducing EASI scores from baseline, though dupilumab was associated with a higher chance of achieving EASI‐50 and IGA 0/1 at 16 weeks.42,43 Lebrikizumab showed comparable or superior performance to tralokinumab for clinician and patient‐reported efficacy measures.41,42
A comparative study that analyzed propensity‐matched participant cohorts based on week 16 EASI and % BSA scores from the ADvocate trials and the SOLO‐CONTINUE dupilumab phase 3 RCT found that lebrikizumab every 4 weeks showed comparable or superior maintenance of efficacy outcomes between week 16 and week 52.43 Lebrikizumab may be advantageous due to the less frequent dosing schedule during the maintenance phase, as the FDA‐approved maintenance frequency of dupilumab is every 2 weeks.43
Conclusion
Lebrikizumab is a novel monoclonal IgG4 antibody that targets IL‐13 and prevents IL‐4Rα/IL‐13Rα1 receptor signaling and is approved by Health Canada for the treatment of moderate‐to‐severe AD in adolescents 12 years or older and adults. Lebrikizumab has comparable efficacy to other monoclonal antibody treatments for AD, including dupilumab and tralokinumab, requires less frequent monthly maintenance doses than dupilumab after 16 weeks, and is associated with a lower rate of adverse events compared to JAK inhibitors. Lebrikizumab is a promising option for the treatment of moderate‐to‐severe AD given its favorable safety profile, durable efficacy in long‐term follow‐up studies, and major improvements in pruritus, sleep, and overall quality of life in patients with AD.
References
- Silverberg JI, Barbarot S, Gadkari A, et al. Atopic dermatitis in the pediatric population: a cross-sectional, international epidemiologic study. Ann Allergy Asthma Immunol. 2021 Apr 1;126(4):417-28.
- Wang HY, Pizzichini MM, Becker AB, et al. Disparate geographic prevalences of asthma, allergic rhinoconjunctivitis and atopic eczema among adolescents in five Canadian cities. Pediatr Allergy Immunol. 2010 May 11;21(5):867-77.
- Williams H, Robertson C, Stewart A, et al. Worldwide variations in the prevalence of symptoms of atopic eczema in the International Study of Asthma and Allergies in Childhood. J Allergy Clin Immunol. 1999 Jan;103(1 Pt 1):125-38.
- Drucker AM, Bai L, Eder L, et al. Sociodemographic characteristics and emergency department visits and inpatient hospitalizations for atopic dermatitis in Ontario: a cross-sectional study. CMAJ Open. 2022 Jun 7;10(2):E491-9.
- Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. 2018 Jun;73(6):1284-93.
- Chiesa Fuxench ZC, Block JK, Boguniewicz M, et al. Atopic Dermatitis in America Study: a cross-sectional study examining the prevalence and disease burden of atopic dermatitis in the US adult population. J Invest Dermatol. 2019 Mar;139(3):583-90.
- Fasseeh AN, Elezbawy B, Korra N, et al. Burden of atopic dermatitis in adults and adolescents: a systematic literature review. Dermatol Ther (Heidelb). 2022 Oct 5;12(12):2653-68.
- Sidbury R, Alikhan A, Bercovitch L, et al. Guidelines of care for the management of atopic dermatitis in adults with topical therapies. J Am Acad Dermatol. 2023 Jul;89(1):e1-20.
- Davis DMR, Drucker AM, Alikhan A, et al. Guidelines of care for the management of atopic dermatitis in adults with phototherapy and systemic therapies. J Am Acad Dermatol. 2024 Feb;90(2):e43-56.
- Hanifin JM, Reed ML; Eczema Prevalence and Impact Working Group. A population-based survey of eczema prevalence in the United States. Dermatitis. 2007 Jun;18(2):82-91.
- Moyle M, Cevikbas F, Harden JL, et al. Understanding the immune landscape in atopic dermatitis: the era of biologics and emerging therapeutic approaches. Exp Dermatol. 2019 Apr 15;28(7):756-68.
- Okragly AJ, Ryuzoji A, Wulur I, et al. Binding, neutralization and internalization of the interleukin-13 antibody, lebrikizumab. Dermatol Ther (Heidelb). 2023 Jul;13(7):1535-47.
- Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020 Jan;75(1):54-62.
- McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine. 2015 Sep;75(1):38-50.
- Harb H, Chatila TA. Mechanisms of dupilumab. Clin Exp Allergy. 2020 Jan;50(1):5-14.
- Guttman-Yassky E, Blauvelt A, Eichenfield LF, et al. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol. 2020 Apr 1;156(4):411-20.
- PrEBGLYSSTM (lebrikizumab injection) product monograph. Date of authorization: June 24, 2024. Eli Lilly Canada, Inc. [Internet], Toronto, ON, Canada. [cited September 7, 2024]. Available from: https://pi.lilly.com/ca/ebglyss-ca-pm.pdf
- Ebglyss® (lebrikizumab) prescribing information. Date of revision: April 2024. Almirall Ltd. [Internet], Uxbridge, United Kingdom. [cited September 7, 2024]. Available from: https://dermatology.almirallmed.co.uk/wp-content/uploads/sites/16/2024/05/Ebglyss-250-mg-solution-for-injection-in-pre-filled-syringe-and-pen.pdf
- Zhu R, Zheng Y, Dirks NL, et al. Model-based clinical pharmacology profiling and exposure-response relationships of the efficacy and biomarker of lebrikizumab in patients with moderate-to-severe asthma. Pulm Pharmacol Ther. 2017 Oct;46:88-98.
- Labib A, Ju T, Yosipovitch G. Managing atopic dermatitis with lebrikizumab – the evidence to date. Clin Cosmet Investig Dermatol. 2022 Jun 8;15:1065-72.
- Adam DN, Gooderham MJ, Beecker JR, et al. Expert consensus on the systemic treatment of atopic dermatitis in special populations. J Eur Acad Dermatol Venereol. 2023 Jun;37(6):1135-48.
- Simpson EL, Flohr C, Eichenfield LF, et al. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE). J Am Acad Dermatol. 2018 May;78(5):863-71.
- Dermira, Inc. J2T-DM-KGAB Protocol (2): A randomized double-blind, placebo-controlled trial to evaluate the efficacy and safety of lebrikizumab in patients with moderate-to-severe atopic dermatitis. ClinicalTrials.gov identifier: NCT04146363. Date of approval: May 20, 2020. [Internet]. Accessed Jun 9, 2025. Available from: https://cdn.clinicaltrials.gov/large-docs/63/NCT04146363/Prot_000.pdf
- Silverberg JI, Guttman-Yassky E, Thaçi D, et al. Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis. N Engl J Med. 2023 Mar 15;388(12):1080-91.
- Blauvelt A, Thyssen JP, Guttman-Yassky E, et al. Efficacy and safety of lebrikizumab in moderate-to-severe atopic dermatitis: 52-week results of two randomized double-blinded placebo-controlled phase III trials. Br J Dermatol. 2023 May 24;188(6):740-8.
- Silverberg JI, Wollenberg A, Stein Gold L, et al. Patients with moderate-to-severe atopic dermatitis maintain stable response with no or minimal fluctuations with 1 year of lebrikizumab treatment. Dermatol Ther (Heidelb). 2024 Aug;14(8):2249-60.
- Simpson EL, Gooderham M, Wollenberg A, et al. Efficacy and safety of lebrikizumab in combination with topical corticosteroids in adolescents and adults with moderateto-severe atopic dermatitis: a randomized clinical trial (ADhere) [published correction appears in JAMA Dermatol. 2023 Sep 1;159(9):1014. doi: 10.1001/ jamadermatol.2023.2199]. JAMA Dermatol. 2023 Jan 11;159(2):182-91.
- Nearly 80% of patients with moderate-to-severe atopic dermatitis maintained clear or almost clear skin with Lilly’s lebrikizumab monthly maintenance dosing at two years. Eli Lilly and Company. [Internet], Indianapolis, Indiana, United States. [cited October 7, 2024]. Available from: https://investor.lilly.com/news-releases/news-release-details/nearly-80-patients-moderate-severe-atopic-dermatitis-maintained
- Paller AS, Flohr C, Eichenfield LF, et al. Safety and efficacy of lebrikizumab in adolescent patients with moderate-to-severe atopic dermatitis: a 52-week, open-label, phase 3 study. Dermatol Ther (Heidelb). 2023 Jun 15;13(7):1517-34.
- Hebert AA, Flohr C, Hong HC, et al. Efficacy of lebrikizumab in adolescent patients with moderate-to-severe atopic dermatitis: 16-week results from three randomized phase 3 clinical trials. J Dermatolog Treat. 2024 May 12;35(1):2324833.
- Soung J, Laquer V, Merola JF, et al. The impact of lebrikizumab on vaccine-induced immune responses: results from a phase 3 study in adult patients with moderate-tosevere atopic dermatitis. Dermatol Ther (Heidelb). 2024 Aug;14(8):2181-93.
- Eli Lilly and Company. ClinicalTrials.gov [Internet]. A study of lebrikizumab (LY3650150) in participants 6 months to <18 years of age with moderate-to-severe atopic dermatitis (ADorable-1). ClinicalTrials.gov Identifier NCT05559359. Updated May 20, 2025. Accessed June 9, 2025. Available from: https://clinicaltrials.gov/study/NCT05559359
- Eli Lilly and Company. ClinicalTrials.gov [Internet]. A study of lebrikizumab (LY3650150) in participants 6 months to <18 years of age with moderate-to-severe atopic dermatitis (ADorable-2). ClinicalTrials.gov Identifier NCT0573548. Updated May 20, 2025. Accessed June 9, 2025. Available from: https://clinicaltrials.gov/study/NCT05735483
- Yosipovitch G, Lio PA, Rosmarin D, et al. Lebrikizumab improved itch and reduced the extent of itch interference on sleep in patients with moderate-to-severe atopic dermatitis: two randomized, placebo-controlled, phase III trials. Br J Dermatol. 2024 Jan 23;190(2):289-91.
- Soung J, Ständer S, Gutermuth J, et al. Lebrikizumab monotherapy impacts on quality of life scores through improved itch and sleep interference in two phase 3 trials. J Dermatolog Treat. 2024 Apr 28;35(1):2329240.
- Lio PA, Armstrong A, Gutermuth J, et al. Lebrikizumab improves quality of life and patient-reported symptoms of anxiety and depression in patients with moderate-to-severe atopic dermatitis. Dermatol Ther (Heidelb). 2024 Jul;14(7):1929-43.
- Stein Gold L, Thaçi D, Thyssen JP, et al. Safety of lebrikizumab in adults and adolescents with moderate-to-severe atopic dermatitis: an integrated analysis of eight clinical trials. Am J Clin Dermatol. 2023 Jul;24(4):595-607.
- Corren J, Szefler SJ, Sher E, et al. Lebrikizumab in uncontrolled asthma: reanalysis in a well-defined type 2 population [published correction appears in J Allergy Clin Immunol Pract. 2024 Jul;12(7):1950. doi: 10.1016/j.jaip.2024.06.007]. J Allergy Clin Immunol Pract. 2024 May;12(5):1215-24.
- Gallagher A, Edwards M, Nair P, et al. Anti-interleukin-13 and anti-interleukin-4 agents versus placebo, anti-interleukin-5 or anti-immunoglobulin-E agents, for people with asthma. Cochrane Database Syst Rev. 2021 Oct 19;10(10):CD012929.
- Kardas G, Panek M, Kuna P, et al. Monoclonal antibodies in the management of asthma: dead ends, current status and future perspectives. Front Immunol. 2022 Dec 6;13:983852.
- Chu AWL, Wong MM, Rayner DG, et al. Systemic treatments for atopic dermatitis (eczema): Systematic review and network meta-analysis of randomized trials. J Allergy Clin Immunol. 2023 Dec;152(6):1470-92.
- Drucker AM, Lam M, Prieto-Merino D, et al. Systemic immunomodulatory treatments for atopic dermatitis: living systematic review and network meta-analysis update [published correction appears in JAMA Dermatol. 2024 Sep 1;160(9):1012. doi: 10.1001/jamadermatol.2024.3600]. JAMA Dermatol. 2024 Sep 1;160(9):936-44.
- Rand K, Ramos-Goñi JM, Akmaz B, et al. Matching-adjusted indirect comparison of the long-term efficacy maintenance and adverse event rates of lebrikizumab versus dupilumab in moderate-to-severe atopic dermatitis [published correction appears in Dermatol Ther (Heidelb). 2024 Jan;14(1):183-5. doi: 10.1007/s13555-023-01076-x]. Dermatol Ther (Heidelb). 2024 Jan;14(1):169-82.