STL Supplements – Skin Therapy Letter https://www.skintherapyletter.com Written by Dermatologists for Dermatologists Thu, 28 Aug 2025 23:55:14 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.1 Protected: What’s New in Pre-Aging Topical Modalities: The Clinical Efficacy of Acetyl Dipeptide-31 Amide https://www.skintherapyletter.com/supplement/whats-new-in-pre-aging-topical-modalities-the-clinical-efficacy-of-acetyl-dipeptide-31-amide/ Thu, 28 Aug 2025 23:02:46 +0000 https://www.skintherapyletter.com/?p=16105

This content is password protected. To view it please enter your password below:

]]>
Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis https://www.skintherapyletter.com/psoriasis/real-world-canadian-cases-tildrakizumab/ Mon, 25 Aug 2025 18:27:56 +0000 https://www.skintherapyletter.com/?p=16063 Kyle Cullingham MD, FRCPC 1; Parbeer Grewal MD, FRCPC, FAAD2; Sophie Guénin MD, MSc3; Phillipe Lefrancois MD, PhD, FRCPC4; Maxwell Sauder MD, FRCPC, DABD5; Charles Lynde MD, FRCPC, DABD, FCDA6

Affiliations



1Department of Dermatology, University of Saskatchewan, Dermatology Center, Saskatoon, SK, Canada

2Department of Medicine, University of Alberta, Edmonton, Dermatology and Aesthetics, Edmonton, AB, Canada

3Mount Sinai Dermatology, New York, NY, USA

4Department of Dermatology, McGill University, Montreal, QC, Canada

5Department of Medicine, University of Toronto, Toronto, ON, Canada

6Department of Medicine, University of Toronto, Toronto, ON, Lynderm Research, Markham, ON, Canada

Abstract

Background: Psoriasis vulgaris, or plaque psoriasis, is a chronic systemic inflammatory disease characterized by scaly, erythematous plaques. It is associated with comorbidities such as cardiovascular disease, metabolic syndrome, depression, and anxiety, significantly affecting patients’ quality of life. Tildrakizumab, an IL-23 inhibitor, is approved for treating adults with moderate-to-severe plaque psoriasis.

Objectives: This real-world case series aims to illustrate diverse cases of moderate-to-severe psoriasis to highlight the clinical use of tildrakizumab by expert dermatologists. It seeks to answer: (1) How are experienced specialists utilizing tildrakizumab? (2) What are the patient outcomes on this injection regimen?

Methods: Expert dermatologists from four Canadian provinces (Saskatchewan, Alberta, Quebec, Ontario) contributed two patient cases each, ensuring diverse clinical settings and patient populations. Cases included the specialists’ clinical reasoning and patient outcomes at weeks 0, 4, 8, 12, and 16 post-tildrakizumab initiation.

Results: Seven real-world cases demonstrated the effective use of tildrakizumab in Canadian patients with psoriasis, including those with metabolic syndrome, psoriatic arthritis, malignancy history, and refractory disease. All patients experienced psoriasis improvement over the treatment period without notable adverse events.

Conclusions: Experts agreed that tildrakizumab is a safe, effective, and convenient treatment for psoriasis in Canada. Patients were highly satisfied with their outcomes and the therapy’s ease of use. These real-world cases provide valuable guidance for selecting tildrakizumab candidates seeking effective treatment with infrequent dosing suitable for various age groups, comorbidities, and busy lifestyles.

Keywords: psoriasis, real-world cases, IL-23 inhibitor, tildrakizumab

Funding/Disclosures: An unrestricted educational grant from SunPharma Canada supported the real-world case series. All authors contributed to the cases and development of the manuscript, reviewed it, and agreed with its content and publication.

PDF Download


Introduction

Psoriasis is a systemic inflammatory disease with a heterogeneous skin presentation, affecting approximately 125 million people worldwide. 1 Psoriasis vulgaris, the most common variant, accounts for approximately 85% of psoriasis cases in Canadians.2 It typically presents as red, scaly, well-demarcated plaques or patches on the skin, which may appear violaceous or hyperpigmented in darker skin types.3 These plaques can affect the entire body but are frequently found on the scalp, face, intertriginous regions, nails, palms, and soles.4 The disease commonly manifests in adolescence or middle age (50–60 years) and follows a chronic course, rarely improving without treatment.1

The etiology of psoriasis involves genetic, environmental, infectious, and lifestyle factors that contribute to the overactivation of the adaptive immune system. This leads to hyperproliferation of epidermal keratinocytes, vascular hyperplasia, and infiltration of T lymphocytes, neutrophils, and other immune mediators.5-6 Interleukin 23 (IL-23) dysregulation has been identified as a key driver of psoriasis and autoimmune inflammation. Upon exposure to a trigger, TNF-α is released in the skin, activating dermal dendritic cells (DCs), which in turn produce IL-23. This cytokine activates Th17 cells and other inflammatory cells.7 Activated Th17 cells release pro-inflammatory cytokines—IL-17A/F, IL-22, IL-26, IFNγ, IL-6, TNF-α, and GM-CSF—resulting in keratinocyte hyperproliferation and an amplified inflammatory response.8 Notably, IL-23 plays a crucial role in both initiating and maintaining Th17 cell activation, IL-17 production, and the inflammatory feedback loop (Figure 1).8

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 1. Psoriasis Pathogenesis via IL-23
In response to an internal or external stimuli, the skin releases TNF-𝛼 which activates dendritic cells (DC). Activated DC produce IL-23 which activates the Th17 cell population to produce IL-17. IL-17 triggers a pro-inflammatory cascade downstream which results in hyperproliferation of keratinocytes and psoriatic plaque formation. Tildrakizumab is an IL-23 inhibitor that functions by blocking the p19 subunit of the cytokine. Figure has been adapted from Chan et al. (2018) and made with biorender.com.28

Psoriatic arthritis (PsA), which shares a similar pathogenic mechanism, is the most prevalent comorbid condition, developing in up to 30% of psoriasis patients and potentially leading to joint destruction and lifelong disability.9 Furthermore, nearly half of psoriasis patients have been reported to have comorbid conditions such as cardiovascular disease (CVD), metabolic syndrome (MetS), anxiety, and depression.10 Systemic IL-23/Th17 inflammation in psoriasis has been linked to other inflammatory diseases, including CVD and MetS.9 Elevated Th17 and IL-17 levels have been observed in atherosclerosis patients, correlating with vascular inflammation, endothelial dysfunction, and atherosclerotic plaque formation.11-12 Additionally, IL-23 and IL-23R levels are elevated within atherosclerotic plaques, indicating a role in disease progression.10 This corresponds with the increased incidence of myocardial infarction, ischemic heart disease, and severe vascular events in psoriasis patients.10

Obesity (BMI >30) has also been associated with psoriasis due to pro-inflammatory signaling from adipocytes, which contribute to disease pathogenesis via increased IL-6 and TNF-α production.13 These cytokines also promote insulin resistance, further exacerbating MetS and CVD.13 Given these systemic implications, effective psoriasis treatment may provide additional benefits, such as improving lipid-rich atherosclerosis and reducing non-calcified coronary plaque burden.12

Existing Treatments, Gaps, and Needs

Psoriasis has traditionally been managed with topical corticosteroids, but increasing recognition of its systemic nature necessitates systemic treatments. For mild psoriatic disease (3–5% body surface area [BSA]), topical corticosteroids, vitamin D3 analogs, calcineurin inhibitors, keratolytics, and phototherapy remain standard therapies.14 In moderate (BSA 5–10%) to severe (>10% BSA) cases, systemic treatments such as methotrexate, cyclosporine, and biologics targeting TNF-α (adalimumab, infliximab), IL-17 (secukinumab, ixekizumab, brodalumab), IL-12/23 (ustekinumab) and IL-23 (guselkumab, tildrakizumab, risankizumab) are commonly used. Additionally, small-molecule Janus kinase inhibitors such as deucravacitinib (approved for psoriasis) and tofacitinib as well as upadacitinib (approved for PsA) have expanded treatment options.15

Despite these advances, Canadian psoriasis patients remain largely dissatisfied with current treatments. In an online survey assessing awareness and use of available therapies, only 24% of respondents reported being “very satisfied” with their current regimen.16 Among Canadian dermatologists, key challenges in managing moderate psoriasis included treatment access, time to treatment, limited treatment choices, comorbidities, and patient acceptance.17 Notably, topical treatments remain the predominant approach for moderate psoriasis in Canada, whereas systemic therapies (including biologics) are underutilized. This contrasts with a study of 150 U.S. dermatologists, in which approximately 50% of moderate psoriasis patients were prescribed biologics.18

Tildrakizumab as a Psoriasis Treatment

Tildrakizumab is a high-affinity, humanized IgG1K monoclonal antibody that selectively targets IL-23 via its p19 subunit (Figure 1). It is indicated for adults with moderate-to-severe plaque psoriasis and is administered via subcutaneous injection every 12 weeks. The pivotal reSURFACE1 and reSURFACE2 phase 3, double-blind, randomized clinical trials evaluated the efficacy of tildrakizumab (100 mg and 200 mg) compared to placebo and the TNF-α inhibitor, etanercept.19 Patients received tildrakizumab at weeks 0, 4, and 16, while etanercept was administered twice weekly for the first four weeks and weekly thereafter. The primary endpoints included:

    1. The proportion of participants achieving ≥75% improvement in the Psoriasis Area and Severity Index (PASI 75).
    2. The proportion achieving a Physician’s Global Assessment (PGA) score of “clear” or “minimal,” with a ≥2-grade reduction from baseline at week 12.

In reSURFACE1, 59% of participants receiving tildrakizumab 200 mg, 55% receiving tildrakizumab 100 mg, 4% receiving placebo, and 48% receiving etanercept achieved a PGA 0/1 at week 12.19 Similar results were observed in reSURFACE2. Furthermore, pooled data revealed that tildrakizumab-treated patients with or without MetS had comparable response rates, making it a viable option for this population.19

Long-term data confirm tildrakizumab’s sustained efficacy. In the long-term extension trial, week 244 (5 years), 88.7%, 93.1%, and 114.7% of patients maintained PASI75, PASI90, and PASI100 responses, respectively.20 Pooled phase 2 and 3 data indicate a favorable safety profile, with serious adverse events occurring in only 1.4% of tildrakizumab-treated patients versus 1.7% in the placebo group.20-22 The most common adverse events were upper respiratory infections, injection reactions, and diarrhea.21-22 Importantly, no increased risk was observed for cardiac disease, malignancy, suicidal ideation, inflammatory bowel disease, or demyelinating disorders.21-22

Real-world evidence supports tildrakizumab’s effectiveness for moderate-to-severe plaque psoriasis in Canada.24, 25 In a 75-patient retrospective study, Abu-Hilal et al. demonstrated PASI75 in 95.7% of patients by week 48, regardless of prior biologic expsoure.24 Long-term data confirm tildrakizumab’s sustained efficacy. At week 244 (5 years), 88.7%, 93.1%, and 114.7% of patients maintained PASI75, PASI90, and PASI100 responses, respectively.20 Pooled phase 2 and 3 data indicate a favorable safety profile, with serious adverse events occurring in only 1.4% of tildrakizumab-treated patients versus 1.7% in the placebo group.20-22 The most common adverse events were upper respiratory infections, injection reactions, and diarrhea.21-22 Importantly, no increased risk was observed for cardiac disease, malignancy, suicidal ideation, inflammatory bowel disease, or demyelinating disorders.21-22

Patients in these real-world studies also saw significant improvement in nail and scalp psoriasis during tildrakizumab treatment.24,25 Gebauer et al. conducted a multicenter, randomized, double-blind, placebo-controlled, phase 3b study which showed that tildrakizumab was effective in treatment of scalp psoriasis with 49.4% of tildrakizumab-treated patients achieving a >2 improvement in Investigator Global Assessment (IGA) score by week 12 compared to 7.3% in the placebo group.23

Considering psoriasis’ severe impact on quality of life, Costanzo et al. evaluated tildrakizumab’s effect on health-related quality of life metrics.27 Their study revealed significant improvements in sleep, work productivity, and daily activities, with over 93% of patients expressing confidence in the treatment and an improved ability to lead a normal life.27

Moderate-to-severe psoriasis is a systemic disease that warrants systemic, efficacious, and safe treatments to improve patient symptoms, quality of life, and overall health. Real-world cases provide invaluable guidance for both patients and physicians. Here, we illustrate how shared decision-making, and real-world clinical experience can facilitate successful tildrakizumab therapy across diverse patient populations in Canada.

Methods

Aim of the Project

This real-world case series is designed to illustrate a variety of patients with moderate-to-severe psoriasis treated with tildrakizumab in Canada. Cases showcase leading Canadian dermatologists’ real-world use of tildrakizumab, an advanced treatment for psoriasis. This series aim to answer the questions: 1) How are experienced specialist using tildrakizumab, and 2) How are their patients doing on the injection regimen? Expert dermatologists’ thought-process, reasoning, and rationales are detailed in the patient cases to serve as a guide for licensed providers who treat patients with moderate-to-severe psoriasis in Canada.

Steps in the Process

The project was conducted in the following five steps: 1) project definition and expert panel selection 2) data collection and preparation of patient cases, 3) patient case discussion and selection for publication 4) literature review to support selected cases 5) drafting, review, and finalization of the manuscript.

Role of the Panel

Our expert dermatologist panel consisted of 5 dermatologists practicing in Canada with extensive experience in caring for patients with moderate-to-severe psoriasis. Dermatologists were from 4 different Canadian provinces (Saskatchewan, Alberta, Quebec, Ontario) to capture geographical and provincial differences in dermatological practice. During an advisory meeting on November 17th, 2024, in Montreal, Quebec, expert dermatologists met to report on and discuss clinical cases using tildrakizumab in their clinical practice.

The panel used the following template to gather insight through a case-based approach:

a) Initial Steps in Treatment
____i. Patient-Focused Treatment Strategies
b) Treatment Options
c) Special Considerations
d) Advantages of Tildrakizumab for these Cases

Experts were asked to select two patient cases from their clinical practice to share and discuss. In the second half of the meeting, experts examined and collaborated to select seven real-world cases for inclusion in this publication. Experts agreed that real-world cases should represent common patient presentations and comorbidities to best illustrate tildrakizumab use in a wide range of patients. The publication was prepared and reviewed by the panel.

Tildrakizumab Administration

Before initiating tildrakizumab treatment, all patients completed a 28-day washout period for any prior systemic psoriasis therapies. Tildrakizumab was administered according to the prescribing information.21 Patients received two initial doses at weeks 0 and 4, followed by a dose at week 16 and subsequent doses every 12 weeks. All 100 mg doses were administered subcutaneously at the patient’s preferred injection site.

Experience Gathering and Psoriasis Outcome Measures

Suggested information and outcome measures to present included patient demographics, sex, weight, relevant medical history, concomitant medications, and comorbidities. In addition, patient psoriasis history was elicited by asking about the onset of psoriasis, type of psoriasis, location, and tried and failed therapies. At baseline, the patient’s psoriasis was evaluated using BSA and PASI scores. In addition, dermatologists were encouraged to ask patients how their psoriasis impacted their daily activities, social life, and self-image. Patients were evaluated at week 0 (baseline), week 4, week 8, week 12, and week 16 using BSA, PASI, and patient-reported qualitative measures such as treatment satisfaction and improvement in quality of life. Any adverse reactions were recorded and reported at each visit.

Body Surface Area (BSA)

BSA is a measure of the extent of skin involvement by psoriasis. According to the Joint American Academy of Dermatology-National Psoriasis Foundation guidelines, one severity measurement of psoriasis can be based on the percentage of BSA affected: less than 3% BSA is considered mild, 3-10% BSA is considered moderate and more than 10% BSA is considered severe.29

Psoriasis Area Severity Index (PASI)

Another severity measurement is PASI which quantifies the extent and severity of psoriasis by accounting for intensity of redness, scaling, and plaque thickness. Scoring in each category will produce a score from 0 (no disease) to 72 (maximal disease severity).29

Results

Selected Real-World Cases

The expert dermatologists selected seven cases to demonstrate the real-world use of tildrakizumab in a diverse group of patients with varying skin concerns, past treatment failures, severity, and comorbidities (Table 1).

Table 1. Summary of Real-World Patient Cases

Case

Patient Demographics/ Comorbidities

Outcome Adverse Events Key Learning Points
1 34M, FST IV PsA, Overweight Concomitant use of hydroxychloroquine for PsA

Baseline: BSA 12%, PASI 13.3

Week 16: BSA 3%, PASI 1.8

None Tildrakizumab can be used in prior IL-17 failures and in patients with PsA
2 50F, FST III Anxiety, HTN Concomitant use of verapamil

Baseline: BSA 40%, PASI 13.3

Week 16: BSA 2%, PASI 2

None

High impact on quality of life with dramatic improvement in anxiety/depression

Rapid onset of action for some individuals

Used as first-line biologic in biologic-naïve patient

3 66F, FST II Breast Cancer History

Baseline: BSA 10%, PASI 10.5

Week 8: BSA 2.5%, PASI 2

None Safe for use in patients with a cancer history
4 65M, FST III Concomitant Treatment with Beta-Blocker and NSAID for PsA

Baseline: BSA 14%, PASI 15.0

Week 16: BSA 3%, PASI 3.6

None Example of suboptimal results in a patient who had failed etanercept
5 35M, FST IV

Baseline: BSA 55%, PASI 29.8

Week 16: BSA 0%, PASI 0

None

Safe and effective alternative to cyclosporine

Prior failures of numerous treatments including adalimumab

Significant improvement within initiation period

6 69M, FST II History of Prostate Cancer and Non-Hodgkin’s Lymphoma

Baseline: BSA 15%, PASI 14.5

Week 16: BSA 1%, PASI 1

None Safe and effective in patients with history of lymphoma and prostate cancer
7 47F, FST II Active Smoker

Baseline: BSA 26%, PASI 25.8

Week 16: BSA 14%, PASI 8

None Slow onset; however effective in biologic-naïve patient

Case 1. Use of Tildrakizumab in Previous Secukinumab Failure

A 34-year-old male, Fitzpatrick Skin Types (FST) IV, presented with severe plaque psoriasis involving his hands, legs, and arms. At baseline, he had a BSA of 12% and PASI score of 13.3. He had been diagnosed 3 years prior and had previously tried topical corticosteroids, methotrexate, phototherapy, and secukinumab, but his psoriasis persisted. The patient was also overweight and had psoriatic arthritis for which he took hydroxychloroquine and ibuprofen. He reported feeling self-conscious about his skin and stated that the itching affected his sleep. He avoided participating in sports due to fear of exposing his skin in public. The patient received his first dose of 100mg tildrakizumab. At week 4, he returned for his second 100mg loading dose but had not seen any improvement in his psoriasis (BSA 13%, PASI 15.6). By week 8, he noticed a reduction in plaque redness, though his BSA remained unchanged (BSA 13%, PASI 9.6). No further improvement was seen at week 12. The patient felt his condition had slightly improved and reported no discomfort or adverse events in the first 3 months of treatment. By week 16, he showed significant improvement with noticeable reductions in plaque redness, scaling, and thickness (BSA 3%, PASI 1.8) (Figure 2). The patient strongly agreed that his condition had improved and was satisfied with the treatment. Additionally, his psoriatic arthritis remained stable while on tildrakizumab, and he maintained his hydroxychloroquine regimen, despite the potential to exacerbate psoriasis, without any reported adverse effects.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 2. Case 1.
34-year-old male with severe psoriasis and psoriatic arthritis

Case 2. Biologic-Naïve Patient with Long-Standing, Severe Psoriasis

A 50-year-old female, FST III, presented with long-standing severe psoriasis. Diagnosed at age 14, she had previously tried topical corticosteroids, calcineurin inhibitors, vitamin D analogs, acitretin, and methotrexate without significant or lasting improvement. At presentation, her BSA was 40% and her PASI score was 16, with plaques affecting her torso, nails, and scalp. She avoided social activities, carefully selected clothes to hide her skin, and became less intimate with her husband due to embarrassment. The patient had developed depression due to her inability to live normally with her condition. She was started on tildrakizumab as a first-line biologic. At her week 4 visit, she reported modest improvement in plaque thickness and scaliness, with a 10% reduction in BSA (BSA 30%, PASI 12). Improvement continued at week 8 (BSA 20%, PASI 9) and week 12 (BSA 6%, PASI 4). By week 16, she had seen significant improvement with a BSA of 2% and PASI of 2 (Figure 3). She experienced no adverse events and tolerated the treatment without issues. The patient felt much more confident in her skin and was very satisfied with the therapy.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 3. Case 2.
50-year-old female with severe psoriasis, anxiety, and depression

Case 3. Breast Cancer Survivor with Chronic, Lifelong Psoriasis

A 66-year-old overweight female, FST II, presented with lifelong psoriasis affecting her back and torso. She had suffered from psoriasis since her teenage years and had never achieved reliable control with any therapy. Previously, she had tried methotrexate, apremilast, phototherapy, topical corticosteroids, vitamin D analogs, and topical roflumilast. Additionally, the patient was a two-time breast cancer survivor, currently in remission for the past 10 years. She was apprehensive about starting systemic medications that might jeopardize her cancer remission, but she also felt very self-conscious about her skin and wanted to treat her psoriasis. Given tildrakizumab’s favorable safety profile, her dermatologist suggested trying the therapy. At baseline, the patient had a 10% BSA with a PASI score of 10.4. At week 4, she returned for her second loading dose and showed mild improvement, with a BSA of 8.5% and PASI of 8.4. Further improvement was noted by week 8 (BSA 2.5%, PASI 2) (Figure 4). At this time, she developed generalized pruritus, likely due to concomitant rosuvastatin use. The itching subsided after discontinuing rosuvastatin. The patient tolerated the treatment without any further adverse effects.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 4. Case 3.
66-year-old female with moderate psoriasis and breast cancer history

Case 4. Suboptimal Results with Tildrakizumab after Etanercept (TNF-α) Failure

A 65-year-old male presents to the clinic with refractory psoriasis. The patient has suffered from psoriasis for more than 30 years and had tried topical corticosteroids, tar, and vitamin D analogs as well as systemic etanercept. Topical treatments had provided some relief, but he had been on etanercept since 2004. In 2024, his psoriasis flared despite ongoing therapy. At that time, he had started a beta-blocker, bisoprolol and had been taking naproxen for PsA joint pain. Beta-blockers such as bisoprolol and non-steroidal anti-inflammatory drugs (NSAIDs) such as naproxen, have been associated with increased risk of psoriasis and psoriasis flares.30, 31 The patient felt severely impacted by his psoriasis, which caused skin pain that affected his work, sleep, and daily activities. At his baseline visit, his BSA was 14%, and his PASI score was 15, with primarily extensor surface involvement and foot/sole involvement. He was started on tildrakizumab. At week 4, his BSA decreased to 9%, and his PASI score was 6.4. Despite mild improvement, the patient felt his condition was not improving and was dissatisfied with the effects of the first dose. He also developed cracks on his fingers that made holding objects uncomfortable. By week 8, the patient experienced significant improvement, with a BSA of 1.5% and PASI of 1.8. Although still not fully satisfied with the therapy, he reported dramatic improvement in his quality of life and felt less negatively impacted by his skin. At week 12, the patient had a flare with a BSA of 7% and PASI of 6.8. However, by week 16, his psoriasis had begun to resolve, with a BSA of 3% and PASI of 3.6 (Figure 5). Overall, he acknowledged mild improvement but expressed frustration with suboptimal results and continued psoriasis flares despite ongoing treatment.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 5. Case 4.
65-year-old male with severe psoriasis on A) knees, elbows, soles and B) hands

Case 5. Tildrakizumab Used as a Safe and Effective Alternative to Systemic Immunosuppression

A 35-year-old male, FST IV, presented with a 4-year history of psoriasis. He had no other medical conditions. Since diagnosis, the patient had tried methotrexate, cyclosporine, topical calcineurin inhibitors (tacrolimus), and topical corticosteroids and vitamin D analogs. While on cyclosporine, the patient was concerned about the numerous side effects associated with the medication, and the other treatments were ineffective. At baseline, the patient had severe psoriasis affecting his torso, with a BSA of 55% and a PASI score of 29.8. His skin condition had a significant impact on his social life, self-image, and daily activities. He was started on tildrakizumab. By week 4, the patient saw improvements, with a reduction in BSA to 35% and a PASI score of 3.0. Continued improvement was observed at week 8, with a BSA of 10% and PASI of 2.9. By week 12, the patient was clear of psoriasis, with a BSA and PASI of 0 (Figure 6). He was very satisfied with the treatment and did not experience any adverse effects. He maintained these results through week 16 and continues to be treated with tildrakizumab.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 6. Case 5.
35-year-old male with severe psoriasis, previously responsive to cyclosporine

Case 6. Tildrakizumab Used in Biologic-Naïve Patient with History of Prostate Cancer and Non-Hodgkin’s Lymphoma

A 69-year-old male, FST II, presented with long-standing plaque psoriasis. He was diagnosed about 15 years prior to presentation and had a 15% BSA and PASI score of 14.5. The psoriasis affected his feet, hands, elbows, legs and scalp. At the same time, the patient also had a history of hypertension, gastric reflux, non-Hodgkin’s lymphoma, and prostate cancer for which he was taking the following medications: pantoprazole, furosemide, candesartan, aspirin, and goserelin acetate. For his psoriasis, he had tried acitretin, calcipotriene/betamethasone, and clobetasol ointment. The patient was very bothered by his current regimen of topicals as the creams and ointments often rubbed off on his sheets and clothing. In addition, he often had people asking him about his skin and being concerned about it being infectious. At this time, he was started on tildrakizumab. Four weeks later, the patient began seeing some improvement in the scaling of his plaques. While his BSA remained unchanged, he saw reduction in PASI score to 10.7. He continued to see improvement and at week 8, he had a BSA of 8% and PASI score of 3.6. At week 12, the patient saw a reduction in BSA to 2% and a PASI score of 2.4. He eventually achieved a PASI score of 1 and BSA 1% by week 16 of treatment (Figure 7). No adverse effects were reported during his treatment.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 7. Case 6.
69-year-old male with severe psoriasis and history of prostate cancer and non-Hodgkin’s lymphoma

Case 7. Tildrakizumab Used in Active Smoker with Severe Psoriasis

A 47-year-old female, FST II, presented with severe psoriasis affecting her back, nails, feet, legs, buttocks, and scalp. She had suffered from psoriasis for the past 25 years and had tried various topicals including calcipotriene/betamethasone foam, clobetasol ointment, tazarotene cream, coal tar, UV-B phototherapy and systemic treatments such as methotrexate. She also continued to smoke tobacco products and had hypertension, attention-deficit hyperactivity disorder (ADHD), and obesity. At baseline, the patient had a BSA of 26% and PASI score of 25.8. She felt very self-conscious about her skin and never thought that it would be possible for her to have clear skin. At this time, the patient was started on tildrakizumab. By week 4, the patient saw mild improvement in her psoriasis with a reduction in scaling; however, her BSA increased to 28%. The patient continued with treatment and saw noticeable results at week 8 when she returned to the office and was found to have a BSA of 22% and PASI score of 17.4 (Figure 8). At week 12, she had a BSA of 16% and PASI score of 8.7. By week 16, she further improved to have a BSA of 14% and PASI score of 8 (Figure 8). The patient was very enthusiastic about her results and felt hopeful about continuing with the treatment.

Real World Canadian Case Series: Use of Tildrakizumab for Moderate-to-Severe Psoriasis - image
Figure 8. Case 7.
47-year-old female with obesity, active tobacco use, and severe psoriasis treated with tildrakizumab

Discussion

This real-world case discussion provides valuable insights into the use of tildrakizumab as a safe, effective, and convenient therapy for Canadian patients suffering from moderate-to-severe psoriasis. All patients presented showed significant reductions in BSA and PASI by week 8 or week 16 of treatment.

In pivotal trials, 64% and 61% of patients on tildrakizumab (100mg) achieved PASI 75 by week 12 in reSURFACE1 and reSURFACE2, respectively This mirrors results from the real world, with 6 of the 7 patient cases showing significant improvement by week 12 or earlier. In reSURFACE2, etanercept was compared to tildrakizumab and demonstrated inferior results to tildrakizumab with only 48% of the etanercept group achieving PASI 75 compared to the 61% in the tildrakizumab group. One partial tildrakizumab responder in our series failed to respond to etanercept; however, he had mild improvements in his psoriasis after starting tildrakizumab demonstrating that IL-23 blockade may be more efficacious than TNF-α inhibition in some patients. Similarly, another patient had previously failed adalimumab before trying tildrakizumab. Our real-world cases, along with multiple real-world retrospective studies also confirm tildrakizumab efficacy in special psoriasis sites such as scalp, nails, palms and soles.23-26 Importantly, tildrakizumab was also effective in patients with multiple comorbidities and refractory psoriasis. It also proved to be an effective treatment in overweight patients with BMI>25, which is critical in that approximately a third of patients with psoriasis meet criteria for MetS.32 Preliminary results from a recent study suggests that tildrakizumab may be effective in obesity by reducing levels of adipokines, immune modulating cytokines originating from adipocytes.33 Taken together, tildrakizumab should be considered a first-line biologic given its efficacity in a variety of patients, psoriasis presentations, and safety profile.

Unlike many existing therapies, tildrakizumab has a highly favorable safety profile. In clinical trials, there were no serious adverse events, and the most common adverse events included upper respiratory illness and injection site reactions.21 A pooled analysis of three randomized controlled clinical trials demonstrates that the rates of treatment-emergent adverse events (TEAE), serious TAE, and discontinuations due to adverse events were similar in both the tildrakizumab treatment and placebo group. Moreover, no reported cases of inflammatory bowel disease, candida infections or suicides were reported which are key counseling points for patients starting anti-IL-17 biologics. Additionally, no increased risk of malignancy was observed during tildrakizumab treatment. This is significant, as psoriasis increases the risk of lymphohematopoietic, head and neck, and gastrointestinal cancers, as well as non-melanoma skin cancers in patients who have previously received psoralen ultraviolet-A treatment. The increased cancer risk in this population makes carcinogenic treatments like methotrexate and cyclosporine less ideal compared to tildrakizumab.

Tildrakizumab does not harbor risks for MACE, VTE, or malignancy which makes it an appropriate first-line treatment for biologic-naïve and biologic-experienced patients.21 It may also be especially helpful in adult patients over the age of 50 with multiple comorbidities such as existing CVD, history of stroke or previous malignancies. One expert suggested tildrakizumab to be the ideal treatment for such as patient: the 70-year-old male with complex medical history including cardiovascular and cancer history (and perhaps a current smoker) who is seeking something to relieve his psoriasis symptoms and improve his quality of life. This is supported by pooled analyses of reSURFACE1 and reSURFACE2 which demonstrates efficacy, safety, and sustained responses in patients > 65 years through 244 weeks.35 Safe use of tildrakizumab in the elderly population makes it an invaluable treatment for a population with high prevalence of comorbidities and polypharmacy. Experts agree that the only drawback of tildrakizumab is that some patients may require multiple doses before experiencing significant effects. This delay can be frustrating for patients who are hoping for quicker skin clearance.

Despite slow onset of action, patients are generally highly satisfied with tildrakizumab treatment. In the TRIBUTE study, researchers measured tildrakizumab impact on health-related quality of life and found that patients had significant improvement in their skin as well as their sleep, work productivity, activity level, and absenteeism.27 Tildrakizumab is also convenient, with every 12-week dosing making it suitable for patients with busy work schedules or those who live between multiple locations. In Canada, it is ideal for the “snowbird” population who leave for months at a time to escape the winter. Most other biologics are dosed every 2, 4, or 8 weeks, which may impose time constraints on certain patients and their lifestyles. Less frequent dosing reduces the healthcare burden in Canada by decreasing the number of treatment administration visits.

Table 2. Clinical Pearls from Expert Canadian Dermatologists

Tildrakizumab Clinical Pearls

“Tildrakizumab is safe and durable. It may take time to achieve full efficacy, but patients tend to persist with treatment. I am comfortable prescribing it in a large oncology centre”

“Safety is important. We are comfortable with IL-23 inhibitors in general, but especially with tildrakizumab. Convenience and sustainability are also key points. The product has no red flags, it offers the whole package”

“It will never be the fastest or the most efficacious, but it is the best for certain populations: patients with metabolic issues, cancer patients, and any other patients in whom safety is the primary consideration. Look at PASI scores, real-world outcomes, and scalp studies”

“An ideal patient for tildrakizumab: 70-year-old patient with multiple comorbidities who wants to maximize quality of life”

Conclusion

The presented real-world cases reflect expert dermatologists’ clinical experience with tildrakizumab in treating Canadian patients with moderate-to-severe plaque psoriasis. The collective experience of these dermatologists suggests that tildrakizumab is a safe, effective, and durable treatment for a variety of patients. Tildrakizumab is an ideal therapy for older patients with multiple comorbidities who may not be candidates for therapies with a less favorable safety profile. The onset of action with tildrakizumab may vary, with some patients responding quickly while others may only experience results after 12 or 16 weeks. No adverse effects were reported in any of the patients.

Limitations

These patient cases represent outcomes under real-world conditions in patients with differing lifestyles and environments. The reported symptoms and measures were provided by dermatologists in their clinics and represent real-world data, rather than data from a randomized clinical trial under controlled conditions. Results are only reported up to the 16-week time point, which may not capture patients who required more doses of tildrakizumab to see improvement. Furthermore, the 16-week time frame does not account for potential future psoriasis flares.

Acknowledgement

The authors acknowledge and thank Anneke Andriessen PhD, for her assistance in preparing and reviewing this manuscript.

References

References



  1. Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020 May 19;323(19):1945-1960.

  2. Levy AR, Davie AM, Brazier NC, et al. Economic burden of moderate to severe plaque psoriasis in Canada. Int J Dermatol. 2012 Dec;51(12):1432-40.

  3. Kaufman BP, Alexis AF. Psoriasis in skin of color: insights into the epidemiology, clinical presentation, genetics, quality-of-life impact, and treatment of psoriasis in non-white racial/ethnic groups. Am J Clin Dermatol. 2018 Jun;19(3):405-423.

  4. Dopytalska K, Sobolewski P, Błaszczak A, et al. Psoriasis in special localizations. Reumatologia. 2018;56(6):392-398.

  5. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009 Jul 30;361(5):496-509.

  6. Krueger JG, Bowcock A. Psoriasis pathophysiology: current concepts of pathogenesis. Ann Rheum Dis. 64(suppl 2), ii30-ii36.

  7. Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol. 2008 Nov 1;181(9):5948-55.

  8. Girolomoni G, Strohal R, Puig L, et al. The role of IL‐23 and the IL‐23/TH 17 immune axis in the pathogenesis and treatment of psoriasis. J Eur Acad Dermatol Venereol. 2017 Oct;31(10):1616-1626.

  9. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017 May 25;376(21):2097.

  10. Wu JJ, Kavanaugh A, Lebwohl MG, et al. Psoriasis and metabolic syndrome: implications for the management and treatment of psoriasis. J Eur Acad Dermatol Venereol. 2022 Jun;36(6):797-806.

  11. Kimball AB, Guérin A, Tsaneva M, et al. Economic burden of comorbidities in patients with psoriasis is substantial. J Eur Acad Dermatol Venereol. 2011 Feb;25(2):157-63.

  12. Guo L, Kircik L, Armstrong AW. INDIVIDUAL ARTICLE: Psoriasis and Obesity: Optimizing Pharmacologic Treatment and Lifestyle Interventions. J Drugs Dermatol. 2025 Jan 1;24(1):491722s4-491722s14.

  13. Bagel J. Treatment strategies, management of comorbidities, and the role of IL-23 inhibitors in moderate to severe psoriasis. Am J Manag Care. 2021 Jun;27(10 Suppl):S203-S208.

  14. Lee HJ, Kim M. Challenges and future trends in the treatment of psoriasis. Int J Mol Sci. 2023 Aug 28;24(17):13313.

  15. Kvist-Hansen A, Hansen PR, Skov L. Systemic treatment of psoriasis with JAK inhibitors: a review. Dermatol Ther (Heidelb). 2020 Feb;10(1):29-42.

  16. Poulin Y, Papp KA, Wasel NR, et al. A Canadian online survey to evaluate awareness and treatment satisfaction in individuals with moderate to severe plaque psoriasis. Int J Dermatol. 2010 Dec;49(12):1368-75.

  17. Gooderham MJ, Lynde C, Turchin I, et al. Real‐world, long‐term treatment patterns of commonly used biologics in Canadian patients with moderate‐to‐severe chronic plaque psoriasis. J Dermatol. 2022 Jan;49(1):95-105.

  18. Knuckles MLF, Levi E, Soung J. Defining and treating moderate plaque psoriasis: a dermatologist survey. J Dermatolog Treat. 2018 Nov;29(7):658-663.

  19. Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017 Jul 15;390(10091):276-288.

  20. Thaci D, Piaserico S, Warren RB, et al. Five‐year efficacy and safety of tildrakizumab in patients with moderate‐to‐severe psoriasis who respond at week 28: pooled analyses of two randomized phase III clinical trials (reSURFACE 1 and reSURFACE 2). Br J Dermatol. 2021 Aug;185(2):323-334.

  21. ILUMYA® [package insert]. Princeton, NJ: Sun Pharmaceutical Industries, Inc. https://www.ilumyapro.com/;

  22. Blauvelt A, Reich K, Papp KA, et al. Safety of tildrakizumab for moderate‐to‐severe plaque psoriasis: pooled analysis of three randomized controlled trials. Br J Dermatol. 2018 Sep;179(3):615-622.

  23. Gebauer K, Spelman L, Yamauchi PS, et al. Efficacy and safety of tildrakizumab for the treatment of moderate-to-severe plaque psoriasis of the scalp: a multicenter, randomized, double-blind, placebo-controlled, phase 3b study. J Am Acad Dermatol. 2024 Jul;91(1):91-99.

  24. Abu-Hilal M, Cowger J, Bawazir M, et al. Real-World Effectiveness of Tildrakizumab for Moderate-to-Severe Plaque Psoriasis in Canada. J Cutan Med Surg. 2025 Mar-Apr;29(2):137-142.

  25. Tsianakas A, Schwichtenberg U, Pierchalla P, et al. Real‐world effectiveness and safety of tildrakizumab in long‐term treatment of plaque psoriasis: results from the non‐interventional, prospective, multicentre study TILOT. J Eur Acad Dermatol Venereol. 2023;37(1):85-92.

  26. Narcisi A, Valenti M, Gargiulo L, et al. Real‐life effectiveness of tildrakizumab in chronic plaque psoriasis: a 52‐week multicentre retrospective study—IL PSO (Italian landscape psoriasis). J Eur Acad Dermatol Venereol. 2023;37(1):93-103.

  27. Costanzo A, Llamas-Velasco M, Fabbrocini G, et al. Tildrakizumab improves high burden skin symptoms, impaired sleep and quality of life of moderate‐to‐severe plaque psoriasis patients in conditions close to clinical practice. J Eur Acad Dermatol Venereol. 2023;37(10):2004-2015.

  28. Chan TC, Hawkes JE, Krueger JG. Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther Adv Chronic Dis. 2018;9(5):111-119.

  29. Menter A, Cordoro KM, Davis DMR, et al. Joint American Academy of Dermatology–National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis in pediatric patients. J Am Acad Dermatol. 2020;82(1):161-201.

  30. Brauchli YB, Jick SS, Curtin F, Meier CR. Association between beta‐blockers, other antihypertensive drugs and psoriasis: population‐based case–control study. Br J Dermatol. 2008;158(6):1299-1307.

  31. Fry L, Baker BS. Triggering psoriasis: the role of infections and medications. Clin Dermatol. 2007;25(6):606-615.

  32. Langan SM, Seminara NM, Shin DB, et al. Prevalence of metabolic syndrome in patients with psoriasis: a population-based study in the United Kingdom. J Invest Dermatol. 2012;132(3 Pt 1):556-562.

  33. Cacciapuoti S, Megna M, Salza E, Potestio L, Caiazzo G. The effect of tildrakizumab on adipokines production in patients affected by psoriasis and obesity: preliminary results from a single center real-life study. J Dermatolog Treat. 2024;35(1):2291323.

  34. Blauvelt A, Reich K, Papp KA, et al. Safety of tildrakizumab for moderate‐to‐severe plaque psoriasis: pooled analysis of three randomized controlled trials. Br J Dermatol. 2018;179(3):615-622.

  35. Elke, Van, Gaarn K, Almudena Barbero-Castillo, Elke, Satish. Efficacy and Safety of Tildrakizumab in Older Patients: Pooled Analyses of Two Randomized Phase III Clinical Trials (reSURFACE 1 and reSURFACE 2) Through 244 Weeks. Acta dermato-venereologica. 2023 Oct 25;103:adv17752–2.


]]>
Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib https://www.skintherapyletter.com/atopic-dermatitis/atopic-dermatitis-abrocitinib/ Fri, 26 Jan 2024 22:51:59 +0000 https://www.skintherapyletter.com/?p=14954 Charles W. Lynde, MD, FRCPC, DABD, FCDA1 , Anneke Andriessen PhD2, Benjamin Barankin MD, FRCPC3 , Lyn Guenther MD, FRCPC4, Christina Han MD, FRCPC5, Sameh Hanna MD, FRCPC6, Perla Lansang MD, FRCPC7, Andrei Metelitsa MD, FRCPC8, Jaggi Rao MD, FRCPC9, Christopher Sibley MD, PhD, FRCPC10, Jensen Yeung MD, FRCPC11

Affiliations


1Chief Medical Director, The Lynde Institute for Dermatology & Lynderm Research Inc.; Clinical Associate Professor, Department of Medicine, University of Toronto; Investigator, Probity Medical Research, Markham, ON, Canada

2UMC Radboud, Nijmegen, Andriessen Consultants, Malden, The Netherlands

3Medical Director & Founder, Toronto Dermatology Centre; Investigator, Probity Medical Research, Toronto, ON, Canada

4President and Founder, The Guenther Dermatology Research Centre; Professor, Department of Medicine, Division of Dermatology, Western University, London, ON, Canada

5Clinical Assistant Professor, Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, BC, Canada

6Medical Director, Dermatology On Bloor; Investigator, Probity Medical Research Toronto, ON, Canada

7Associate Professor, Division of Dermatology, University of Toronto, Toronto, ON, Canada

8Founder & Director, Beacon Dermatology; Associate Professor of Dermatology, University of Calgary, Calgary, AB, Canada

9Clinical Professor, Division of Dermatology, University of Alberta, Edmonton, AB, Canada

10Medical Director, Victoria Park, Ottawa, ON, Canada

11Medical Director, PERC Dermatology, Women’s College Hospital; Assistant Professor, Department of Medicine, University of Toronto; Investigator, K. Papp Clinical Research, Probity Medical Research, Toronto, ON, Canada


Abstract

Background: Atopic dermatitis (AD) is a heterogeneous disease characterised by epidermal barrier dysfunction and immune dysregulation. It commonly presents with pruritus and eczematous lesions that significantly impact quality of life. Abrocitinib is a JAK inhibitor approved for treatment of refractory, moderate-to-severe AD in patients 12 years and older.

Objectives: This real-world case series intends to illustrate a variety of moderate-to-severe AD patient cases to help guide discussions around abrocitinib and describe its treatment strategies used by experts in the field.

Methods: Expert panel members were recruited from across Canada to discuss varying clinical AD phenotypes seen in their clinic. Guided by literature, the panel shared their opinions and insights to provide a holistic view of the overarching question, “Which patients are good abrocitinib candidates?”

Results: The panel reported on ten real-world patient cases that detailed the use of abrocitinib in biologic naïve patients, refractory AD patients, complex medical patients, and those with differing treatment goals. Cases aim to demonstrate the broad use of abrocitinib in patients with AD, offering a learning point with each real-world case.

Conclusions: Each presented real-world case reflects the panel’s clinical experience. Panel members concluded that abrocitinib is a fast-acting, safe, and efficacious therapy for a wide variety of AD patients with differing disease severities and comorbidities. Treatment with abrocitinib may cause transient nausea that frequently resolves by taking it with food. Overall, patients are highly satisfied with the treatment.

Keywords: atopic dermatitis, real-world cases, JAK inhibitor, abrocitinib

Disclosures and Acknowledgment: The authors conducted the real-world series, supported by an educational grant from Pfizer Canada. The authors acknowledge and thank Sophie Guénin, MSc, for her assistance in preparing this manuscript.

PDF Download


Introduction

Atopic dermatitis (AD) is a heterogeneous, chronic inflammatory skin disease characterized by epidermal barrier breakdown, immune dysregulation, and significantly reduced quality of life (QoL).1 Approximately 3.5% of the total Canadian population and 25.4% of the pediatric Canadian population is affected with AD.1,2 This relapsing condition may present as dry, erythematous, sensitive skin or pruritic, excoriated, eczematous, and painful patches with weeping erosions and prurigo nodules.1 About one-third of AD patients are affected by atopic comorbidities such as asthma, food allergy, and hay fever.3

Patients with AD report impaired quality of life that limits their daily lives and social interactions.3 Pruritus is reported as the most burdensome symptom of AD, with 95% of patients reporting itch as the most important indicator of treatment response.4 Other burdensome symptoms included excessive dryness, scaling, inflamed skin, skin pain, and sleep disturbance.4 Impaired barrier function in AD is largely attributed to filaggrin dysfunction.5 Meanwhile, immune dysregulation in AD largely stems from T-helper (Th)2 cell cytokines, interleukin (IL)-4 and IL-13, in its acute phase and Th1 skewing in chronic disease.6 IL-22 and IL-17-producing T cells have also been implicated in the pathogenesis of AD.6

Systemic Treatment for Moderate-to-Severe AD

The consensus-based European guidelines for the treatment of AD recommend proactive therapy with topical calcineurin inhibitor (TCI) or topical glucocorticosteroids (TCS) for moderate AD along with narrow band (nb) UVB phototherapy, psychosomatic counseling, and climate therapy.6 For severe AD, the guidelines recommend hospitalization in specific cases, systemic immunosuppression with cyclosporine, short-course oral glucocorticosteroids, methotrexate, azathioprine, or mycophenolate mofetil.7 Biologic monoclonal antibody therapies such as dupilumab are also recommended for severe AD patients.7

Dupilumab is an anti-IL-4-receptor α monoclonal antibody that inhibits the signaling of both IL-4 and IL-13.6 Since the guidelines were published in 2018, an additional monoclonal antibody therapy, tralokinumab, an IL-13 inhibitor, has been approved for AD treatment in Canada, as well as two janus kinase inhibitors (JAK) inhibitors (JAKi): abrocitinib and upadacitinib.6

Newer topicals such as the topical PDE4 inhibitor, crisaborole, has also been recently introduced for AD treatment, and ruxolitinib, a topical JAK inhibitor, not yet available in Canada.6,7

Abrocitinib & JAK Inhibitors (JAKis)

JAKis are a new class of systemic treatments for AD that function by blocking downstream cytokine inflammatory signaling.6 Abrocitinib and upadacitinib are once daily, oral JAK1 inhibitors that block IL-4 and IL-13, cytokines involved in the pathogenesis of AD, downstream.8,9 Abrocitinib is available in three doses: 50 mg, 100 mg, and 200 mg, and is approved for moderate-to-severe AD patients aged 12 and older.9 In pivotal trials JADE MONO-1 and JADE-MONO-2, abrocitinib demonstrated significant pruritus reduction within two weeks.10,11 In a phase 3 comparative clinical trial, JADE-COMPARE, abrocitinib 200 mg demonstrated greater IGA response and itch response at endpoint than dupilumab.12 As with all JAK inhibitors, abrocitinib has inherited a black box warning for thrombosis, major adverse cardiovascular events (MACE), and malignancy. Despite this, clinical trial safety analysis at 48 weeks of both the 100 mg and 200 mg abrocitinib dosage groups showed only 0% to 0.3% incidence of the following: nonmelanoma skin cancer (NMSC), malignancy, MACE, or VTEs.13

Upadacitinib is approved for the treatment of AD, rheumatoid arthritis, psoriatic arthritis, ulcerative colitis, Crohn’s disease, ankylosing spondylitis, and non-radiographic axial spondylarthritis.9 In refractory moderate-to-severe AD, upadacitinib is approved in Canada for ages 12 and up with two dosing options: 15 mg and 30 mg; recommendations suggest initiating treatment at 15 mg prior to titrating up to 30 mg.14

As more treatments become available, it will be important for clinicians to partner with patients in a treat-to-target (TTT) paradigm to identify the optimal AD treatment for each patient.15

Methods

Aim of the Project

This real-world case series illustrates a variety of patients with moderate-to-severe AD treated with abrocitinib. The cases outline the TTT paradigm and demonstrate patient-provider partnerships that highlight patient priorities and ideal treatment options. Expert panelists’ thought processes, reasoning, and rationales are detailed in the following patient cases to serve as a guide for licensed providers who treat patients with AD.

Steps in the Process

The project was conducted in the following five steps: 1) project definition and expert panel selection 2) data collection and preparation of patient cases, 3) patient case discussion and selection for publication 4) literature review to support selected cases 5) drafting, review, and finalization of the manuscript.

Role of the Panel

The panel consisted of 10 dermatologists practicing in Canada who commonly care for patients with AD. Panelists were chosen from 3 provinces in Canada to capture geographical and provincial differences in dermatological practice. During the Dermatology Update conference on April 30th, 2023, in Vancouver, panelists met to report on and discuss clinical cases of AD patients who were suitable candidates for abrocitinib treatment.

The panel used the following template to gather insight through a case-based approach:

a) Initial Steps in Treatment

i. Prevention and Education
ii. Patient-Focused Treatment Strategies

b) Treatment Options
c) Special Considerations
d) Advantages of Abrocitinib for these Cases

Panelists were asked to select two patient cases from their clinical practice to share and discuss. In the second half of the meeting, panelists examined and collaborated to select ten real-world cases for inclusion in the publication. Panel members agreed that real-world cases should focus on common AD scenarios encountered in the clinic. The publication was prepared and reviewed by the panel.

Experience Gathering and Atopic Dermatitis Outcome Measures

Suggested information and outcome measures to present included patient demographics, concomitant medications, comorbidities and Investigators’ Global Assessment (IGA) score, Eczema Area and Severity Index (EASI), Peak Pruritus Numerical Rating Scale (PP-NRS), and patient-reported Dermatology Life Quality Index (DLQI) at weeks 0, 2, and 4 (+/- 5 days) of abrocitinib treatment (Appendix 1). Panelists were also requested to report patient compliance, treatment satisfaction, and any adverse events experienced.

Results

Selected Real-World Cases

The panel selected ten cases to demonstrate the real-world use of abrocitinib in a diverse group of patients with varying skin concerns, past treatment failures, severity, and comorbidities. The findings reflect real-world clinical use of oral abrocitinib and patient treatment outcomes.

Case 1: The recalcitrant, severe AD patient with intense pruritus

A 31-year-old Caucasian, Fitzpatrick Skin Type (FST) 1, female struggling with severe, recalcitrant AD for the past 18 years presented with reported worsening anxiety, avoidance of social activities, and sleep interruption due to debilitating pruritus. Intense pruritus led to diffuse excoriations and multiple skin infections. Her EASI was 22, and DLQI 20. Over the years, the patient had tried TCS, TCI, crisaborole, nbUVB phototherapy, and systemic therapies: prednisone, methotrexate, and intramuscular triamcinolone injection. She had developed striae on her abdomen and arms from frequent TCS use and continued to suffer from intractable itch. The patient started dupilumab but discontinued it after three months due to repeated flu-like symptoms and nasopharyngitis. Having failed first, second-, and third-line therapies for AD, the patient was started on abrocitinib, 200 mg daily. The rationale for beginning abrocitinib at the higher dose was the failure of previous treatment and the patient’s primary complaint of incessant itch. Within eight weeks, she saw rapid improvement; her EASI was 8 and DLQI 4. At week 16, her EASI was 2 and DLQI 0. When asked about her experience, the patient reported that abrocitinib had “life-changing” effects after only one month of treatment. No adverse events occurred, and the patient was reduced to 100 mg abrocitinib daily without exacerbation.

Learning point: Abrocitinib is a fast-acting, effective, and safe treatment option for patients with longstanding, recalcitrant AD. It may be an option for patients who have failed many prior therapies. Abrocitinib therapy can improve patients’ QoL and reduce the need for TCS and other adjunct therapies, thereby sparing patients from the undesirable adverse effects of these treatments.

Case 2. The biologic-naïve patient

Since early childhood, a 55-year-old Caucasian (FST1) salesman with hypertension, hypercholesterolemia, and prediabetes had suffered from severe AD that affected extensive parts of his head, neck, trunk, and extremities. Since starting amlodipine and rosuvastatin for his comorbid conditions, the patient reported worsening xerosis and diffuse erythema.

While biologic naïve, he had previously tried various moisturizers, TCS, TCI, phototherapy, and oral antihistamines with only modest benefit. Despite the multimodal treatment approach, the patient continued to have frequent visits to the Emergency for infections and exacerbations. His condition greatly impacted his work and social interactions as well as his psychological and sexual health. Given his frequent business travel, busy family life, and needle aversion, the patient expressed interest in a convenient, effective treatment that would improve his worsening xerosis and eliminate the requirement for additional therapies. For these reasons, the patient was started on 100 mg abrocitinib. Within two weeks, the patient’s IGA score reduced from 3 to 2, EASI score from 4 to 2 and PP-NRS score from 8 to 3. Two weeks later, the patient saw continued improvement with an IGA score of 1, EASI score of 1, and PP-NRS score of 2. Rapid reduction in itch made the patient extremely satisfied with abrocitinib monotherapy. He did not experience any adverse events and was “thrilled” with his outcome. The patient remains on abrocitinib 100 mg with the option to increase to 200 mg, if necessary.

Learning point: JAKi is an option for biologic-naïve patients for whom self-injection does not correspond to their lifestyle. Patients who travel frequently or lead busy lifestyles may have difficulty transporting subcutaneous injections that must be stored in cool temperatures or having the proper setting to self-inject. Further, some patients are needle-phobic and would prefer an effective, oral treatment option.

Case 3. The patient with post-inflammatory hyperpigmentation

A 29-year-old Southeast Asian (FST4) female presented with sensitive skin, longstanding AD and significant post-inflammatory hyperpigmentation (PIH) around her eyes and on her arms. She had been treated with multiple courses of prednisone with a good response but would predictably flare 2-4 weeks after steroid discontinuation. Having suffered from AD since infancy, she reported the post-inflammatory hyperpigmentation from AD as her most bothersome symptom. Previous treatments included TCS, TCI, and crisaborole. She saw a slight improvement in her skin and pruritus with topical therapy in conjunction with oral antihistamines. Despite mild improvement, she was still desperate for a long-term, effective solution. Her primary care physician had recently made her aware of abrocitinib and encouraged her to seek evaluation by a dermatologist. As a young, single female without any plans for pregnancy in the near future, the patient was a good candidate for abrocitinib and was started on abrocitinib 100 mg. Her IGA was 3 at baseline, EASI score was 4, and PP-NRS score was 8. By week 4, her IGA, EASI, and PP-NRS scores were all 1, and she felt happy and hopeful that PIH marks would continue to fade with time. No compliance issues or adverse reactions were reported.

Learning point: Patients with skin of colour are at increased risk for PIH. Consistent AD treatment with abrocitinib and control of AD, results in PIH improvement and improved mood and QoL. It also reduces inappropriate, long-term use of oral corticosteroids. In females of childbearing age, it is also important to inquire about pregnancy and/or contraceptive use. Pregnancy is a contraindication for abrocitinib use. It should be recognized that contraceptive use may lead to low risk of VTE. Family planning should be discussed with all patients of childbearing potential who are contemplating treatment with abrocitinib.

Case 4. The atopic patient with barriers to treatment access

A 22-year-old (FST2) male with lifelong AD and comorbid atopic diseases (hay fever, asthma, and urticaria) presented with worsening pruritus. Physical exam revealed symmetric, generalized excoriated red, scaly patches with significant lichenification on his bilateral extremities, face, scalp, and back. Working as a dishwasher, the patient reported wearing gloves most of the day to protect his skin from irritating soaps or dryness. Despite his precautions, his skin began impacting his ability to work. He reported skin burning, discomfort, unbearable itch, and skin pain, which frequently disrupted his sleep. At presentation, while on methotrexate, his EASI was 23, IGA score 4, and DLQI 18, with 31% of his body surface area (BSA) affected by AD (Figure 1A [back – face]). Throughout his lifetime, the patient had tried lifestyle modifications such as fragrance-free, hypoallergenic detergent, gentle cleansers, moisturizer application every 2 hours as well as TCS, TCI, calcipotriol gels, oral antihistamines, systemic corticosteroids, and 1-year of methotrexate. Given the severity of the patient’s AD and worsening QoL, the plan was to begin biologic monoclonal antibody therapy. Unfortunately, the patient could not gain access to dupilumab or tralokinumab through his insurance, compassionate drug program, or patient assistance programs. Fortunately, the patient was able to access 100 mg abrocitinib and was thus started on this oral therapy in lieu of biologic therapy. The 100 mg dose was chosen since the patient and his mother were risk-averse and wished to try the 100 mg dose first, increasing to 200 mg only if the 100 mg dose was not sufficient. Two weeks prior to starting abrocitinib, the patient was given his first shingles vaccine. At his 11-week follow-up visit, the patient reported no skin pain and minimal itch with only slight residual erythema on his face (EASI 1.1, IGA 1) (Figure 1B [face – back]). He reported that he could sleep through the night and was able to stop using topical therapies and antihistamines. Of note, the patient experienced mild initial nausea and abdominal pain that abated within the first few weeks of treatment. He had his second shingles vaccine after commencing abrocinitib treatment.

Learning point: Abrocitinib is readily accessible to some patients who are unable to gain coverage for monoclonal antibody therapies such as dupilumab and tralokinumab. While addressing itch, abrocitinib also effectively targets skin pain. It is important to consider shingles vaccination prior to abrocitinib start. The second dose of the vaccine can be given 1-6 months later.16 Nausea may also be an important adverse effect to discuss with patients. Nausea is frequently transient and can be improved by taking abrocitinib with food.

Figure 1: 22-year-old male with severe AD
(Photos courtesy of Lyn Guenther MD, FRCPC)

Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 1A: Xerosis, excoriations, and eczematous lesions over face and back with appreciable Dennie-Morgan lines, prior to abrocitinib treatment
Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 1B: Significant improvement in AD lesions after 11 weeks on daily 100 mg abrocitinib therapy.

Case 5. The complex medical patient with persistent AD-related pruritus

The retired aerospace worker, two-time widower, and former smoker the 63-year-old man, has atopic triad and comorbid anxiety, depression, hyperlipidemia, hypertension, and a history of stroke. He presented with persistent AD, severe pruritus, and atopic keratoconjunctivitis (AKC). His concomitant medications included: citalopram, atorvastatin, ezetimibe, perindopril, and clopidogrel. Despite his other conditions, the patient was most concerned with his pruritus as it had prevented him from sleeping, exercising, socializing, dating, and working. He had only slept through the night three times in the past year. Embarrassed by his skin, he has not been in a swimming pool for over ten years. His EASI was 50, DLQI 26, IGA 4, PP-NRS 10, and BSA 49% (Figure 2A [face – back – legs]).

Having tried numerous moisturizers, TCS, 12 years of nbUVB phototherapy, antihistamines (up to 4 times approved dosing), and multiple cycles of prednisone, he continued to suffer from his skin condition. He was enrolled in a lebrikizumab clinical trial, which helped his AD and pruritus but did not clear his face and neck. However, during the clinical trial, he suffered a non-treatment-related posterior cerebral artery infarct, which has deterred him from future biologic use. The patient redeveloped generalized erythema, lichenification, and scaling off the biologic.

The rationale for starting abrocitinib stemmed from numerous conversations with the patient, during which he highlighted his preference for QoL over mere survival. He was desperately seeking to sleep through the night and regain control of his life. Use of immunosuppressants such as methotrexate and cyclosporine were contraindicated in this patient due to his heavy alcohol use and hypertension, respectively. Given his AKC, dupilumab, and tralokinumab were eliminated as options to reduce the risk of worsening his ocular involvement. The lower perceived rates of MACE and VTE events with abrocitinib compared to upadacitinib led to the patient being started on abrocitinib. Two weeks prior to starting abrocitinib, he received his first dose of the shingles vaccine. The decision was made to start at 50 mg of abrocitinib to mitigate any potential risk for drug interactions or adverse cardiovascular events. He reported that during his first week on abrocitinib, he was able to sleep itch-free every night and noticed smoother skin texture. After one month of monitoring without any adverse events nor appreciable changes in blood values, the patient was increased to 100 mg abrocitinib. After two weeks on 100 mg abrocitinib, the patient’s EASI was reduced to 6.4, DLQI to 6, IGA to 2, PP-NRS to 1.5, and BSA to 10% (Figure 2B [face – back – legs]). The patient remains on 100 mg of abrocitinib with good control of AD, itch, and good tolerability.

Learning point: Assessment of risks and benefits with a patient remains an important consideration in the TTT paradigm for AD treatment. While extra precautions must be considered in a complex medical patient, their complexity does not preclude them from abrocitinib therapy. Titration of the abrocitinib dose, starting at 50 mg, may also help minimize any potential risk while simultaneously allowing patients to benefit from treatment.

Figure 2: 63-year-old medically complex male with anxiety, depression, hyperlipidemia, hypertension, and a history of stroke
(Photos courtesy of Lyn Guenther MD, FRCPC)

Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 2A: Before abrocitinib
Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 2B: After six weeks of abrocitinib therapy (50 mg x 4 weeks, followed by 100 mg x 2 weeks)

Case 6. The busy professional biologic naïve patient needing a fast-acting therapy

A 38-year-old lawyer of Asian (FST4) descent presented to the clinic in search of a rapid solution for his AD. He had no significant past medical history other than lifelong AD. At presentation, his DLQI was 28, EASI was 50, and IGA was 4 (Figure 3A [face – legs]). He had only previously tried betamethasone 0.1% cream and prednisone with mild, transient improvement after each therapy. Despite being naïve to systemic therapies beyond prednisone, he wanted a quick, easy solution to his skin condition that would not impact his busy schedule and allow him to enter conference rooms with confidence. Understanding the patient’s aggressive treatment goals, the provider started him on 200 mg of abrocitinib with concomitant use of tacrolimus ointment 0.1% twice daily, as needed. Four weeks later, the patient returned with 90% skin clearance, including complete clearance on his face and only post-inflammatory erythema remaining on his extremities (Figure 3B face – legs]. At his 6-month follow-up, he had clear skin (Figure 3C [legs]). While he was given the option to reduce to the 100 mg dose, the patient has been reluctant to decrease the dosage given his rapid, lasting response to the current abrocitinib 200 mg regimen.

Learning point: The 200 mg dose of abrocitinib may be an optimal first-choice therapy for select patients. The JAKi allows for fast results, and the ease of a once-daily pill makes it an ideal option for working professionals with hectic lives. The 100 mg and 200 mg abrocitinib dosing options also allow patients to choose how aggressively they would like to treat their AD while relying on their provider to help them weigh the risks and benefits.

Figure 3: 38-year-old biologic naïve male
(Photos courtesy of Andrei Metelitsa MD, FRCPC)

Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 3A. Eczematous lesions on face and legs before abrocitinib
Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 3B. After four weeks of 200 mg abrocitinib therapy
Real-World Insights from Atopic Dermatitis Patients Treated with Abrocitinib - image
Figure 3C. After six months of 200 mg abrocitinib therapy

Case 7. The dupilumab failure AD patient

A 62-year-old (FST3) male with generalized AD since adolescence was initiated on 100 mg of abrocitinib therapy. Having struggled most of his adult life with daily TCS and emollient regimens, the patient was frustrated as his AD had a determinantal impact on his daily activity, social life, sports participation, and sleep. He had previously tried one year of dupilumab treatment with an inadequate response. Prior to starting abrocitinib, his EASI was 12, IGA 3, and PP-NRS 8. After two weeks on abrocitinib, the patient had an EASI of 3.2, IGA 1, and PP-NRS of 1. Despite reporting nausea from therapy, he expressed 8 out of 10 satisfaction, given his dramatic skin response. At his 4-week follow-up, the patient had an EASI of 2.1, IGA 1, and PP-NRS of 1, with resolution of his nausea and no further adverse events.

Learning Point: Abrocitinib is an ideal step-up therapy for patients who have an inadequate response to dupilumab. The differing mechanisms of action of abrocitinib and dupilumab make the trial of abrocitinib worthwhile in a patient who may have failed IL-4 receptor blockade. Nausea, when and if it occurs, often resolves spontaneously.

Case 8. The patient intolerant to dupilumab

Struggling with AD since childhood, a 47-year-old female (FST4) with mild asthma and severe AD presented after 16 months of dupilumab therapy. While dupilumab was effective for the first year, her skin failed to maintain its initial response. She had also developed persistent conjunctivitis secondary to dupilumab use. AD covered her trunk, face, and proximal extremities and often caused her to miss work and avoid romantic and social relationships. She struggled to sleep through the night without scratching. In the past, she had tried topical tacrolimus and clobetasol without any lasting improvements. The rationale for starting 100 mg abrocitinib was intolerance and failure to maintain response to dupilumab. On Day 0, her EASI was 35, IGA 4, and PP-NRS score 8. Upon starting abrocitinib treatment, the patient reported mild nausea that improved when the tablet was taken with food. By week 4, the nausea had resolved, and the patient had an EASI of 16, IGA of 2, and PP-NRS of 3. She reported feeling more confident in her skin, with reduced pruritus and improved sleep and quality of life. Without experiencing any other side effects, the patient remains on 100 mg of abrocitinib and is highly satisfied with the treatment.

Learning Point: The side effect profile for abrocitinib does not include conjunctivitis or any other ocular effects, making it ideal for patients sensitive to the adverse reaction of dupilumab or tralokinumab or patients with comorbid ocular conditions. Lastly, nausea is a common adverse effect of abrocitinib therapy that usually resolves with time and may be mitigated by taking the medication with food.

Case 9. The patient with adult-onset AD

The 49-year-old (FST2) male presented with a 4-year history of adult-onset AD. He had a remote history of alcohol-induced pancreatitis but no other comorbidities. Expressing high levels of frustration with his inadequate sleep and intractable itch, the patient wanted rapid control of his pruritic skin. He had tried TCS, TCI, and cyclosporine without sustained skin improvement, and he experienced deterioration of his kidney function from cyclosporine. His EASI was 25, IGA 4, and PP-NRS score 9. The rationale for starting abrocitinib was that the patient was desperate for rapid control. While upadacitinib was considered for rapid pruritus relief, the patient’s history of alcoholism made abrocitinib a safer option as it does not require monitoring of liver function tests. After four weeks of abrocitinib 100 mg daily use, the patient no longer required use of TCS and had an EASI of 1.2, IGA of 2 and PP-NRS of 4. He was extremely satisfied with treatment and tolerated the treatment without any adverse events.

Learning Point: Immunosuppressants such as cyclosporine and methotrexate have long been used to treat AD, although Health Canada does not approve them for treating AD. In addition, these immunosuppressants are often associated with kidney toxicity (cyclosporine), liver and bone marrow toxicity (methotrexate) as well as malignancy (both medications). Thus, long-term use of these immunosuppressants is not appropriate for long-term use in AD patients. In addition, the increasing availability of efficacious, safe, and targeted treatments for AD makes the use of broad immunosuppressants inappropriate.

Case 10. The AD patient switching from another JAK inhibitor

The 21-year-old (FST4) male university student presented with severe AD involving his torso and limbs. His AD first presented in childhood. He had a positive family history of atopic disease. Having tried TCS, crisaborole, and a 2-year course of methotrexate without improvement, the patient was started on upadacitinib. While the upadacitinib helped to significantly clear his skin, he developed acneiform lesions on his face which led to treatment cessation. His AD returned upon upadacitinib cessation (EASI 24, IGA 4, and BSA 30%). A healthy young man, the patient was offered to start at the higher 200 mg dose of abrocitinib, which should allow for faster control of his AD and a quicker return time to being more productive at school. At his 4-week follow-up, the patient had an EASI of 1.2, IGA of 2, and BSA of 3%, with the most considerable improvement on his face and neck. The patient reported mild nausea a few hours after taking abrocitinib; however, the nausea abated when he started taking it with food. Interestingly, he did not experience acne on abrocitinib.

Learning Point: Abrocitinib is a good treatment option for patients who had adverse reactions to another JAKi. There is a low risk of acne as an adverse reaction to abrocitinib versus upadacitinib. Thus, if a patient develops acne on one JAKi, it does not preclude them from trying abrocitinib.

Discussion

Real-world cases provide highly impactful insight into patient and provider experience with a new treatment. Without a cure, the AD treatment goal is aimed at reducing symptoms to a level that has minimal or no impact on patient QoL. In the patient cases discussed above, all patients had previously tried and failed topical therapies such as TCS, TCI, and various emollients and moisturizers. While some had tried systemic therapies, a few were naïve to systemic AD therapies prior to starting abrocitinib. Each patient discussed had a complete or near complete response by week 4 of abrocitinib therapy and reported significant satisfaction with treatment. This real-world case discussion provides invaluable insight into abrocitinib use in a diverse population of Canadian patients suffering from moderate-to-severe AD.

Biologic Naïve Patients

The 2018 consensus-based European guidelines for the treatment of adult AD only recommend the use of dupilumab in severe AD.6 While JAKi’s were not yet approved when these guidelines were released, clinical experience suggests that many practices do not recommend JAKi until a patient has failed all other standard therapies, such as dupilumab and other immunosuppressants. However, panel members discussed five cases of biologic-naïve patients with safe, efficacious, and accessible treatment with abrocitinib. The patients’ successful treatment with abrocitinib as a second-line therapy after topicals suggests that requiring a patient to cycle through a biologic prior to a JAKi may be unnecessary. Biologic naïve patients reported being “thrilled” and “very satisfied” with abrocitinib oral dosing that provided rapid itch relief and improvement in QoL.

Dupilumab Failed/Intolerant Patients

Another recurring rationale for initiating a patient on abrocitinib therapy was previous inadequate response or intolerance to dupilumab treatment. Three patients presented had previously been on dupilumab and stopped either due to inefficacy, failure to maintain response, or secondary conjunctivitis. Switching to abrocitinib after prior dupilumab therapy had no effect on the JAKi’s efficacy. Each patient saw near complete response to abrocitinib on either 100 mg and 200 mg dosing approaches. Failure to maintain response to dupilumab may stem from the monoclonal antibody’s ability to trigger the development of anti-drug antibodies (ADA).17 Some reports show a 7.61% ADA incidence in dupilumab studies, which may be higher in sporadic dupilumab injectors.18 Abrocitinib, a small-molecule JAK inhibitor, does not trigger the production of ADAs, which may contribute to greater maintenance of initial response.18 In one-year clinical trials, JADE EXTEND for abrocitinib and LIBERTY AD CHRONOS for dupilumab, 60.5% of patients on abrocitinib 200 mg exhibited an IGA 0/1 at week 48 while only 40% of patients on dupilumab 300 mg weekly and 36% of patients on dupilumab 300 mg biweekly exhibited an IGA score of 0/1 at week 52.19,20

Jumping JAKi’s and Adverse Reactions

To date, two systemic JAKi’s, upadacitinib and abrocitinib, are indicated in Canada for AD treatment. The most common adverse reactions to abrocitinib include nasopharyngitis, nausea, headache, herpes simplex, increase in blood creatinine phosphokinase, dizziness, urinary tract infection, fatigue, acne, and vomiting. Acne occurred in 4.7% of patients on 200 mg abrocitinib and 1.6% of patients on 100 mg abrocitinib in placebo-controlled trials.8 While upadacitinib shares many similar adverse reactions to abrocitinib, 16% of patients on 30 mg and 10% on 15 mg of upadacitinib developed acne during placebo-controlled clinical trials.14 Case 10 illustrates that patients who develop acne on upadacitinib may not have this adverse event on abrocitinib.

In the real-world cases presented, nausea was the most common adverse event experienced by four patients in the series. The nausea was reported to subside over time or when counseled to take abrocitinib with food. Reactivation of the varicella-zoster virus (VZV) has also been reported in approximately 1% of abrocitinib-treated patients.13 The panel suggests shingles vaccination in conjunction with JAKi use. Two presented cases reported that first dose shingles vaccination occurred two weeks prior to abrocitinib start.

Dosing Approach

Abrocitinib is unique in that it offers three potential dosing strategies: 50 mg, 100 mg, and 200 mg.8 Depending on preference, patients and providers may choose to start at a higher dose and titrate down or start at a lower dose and titrate up. Considering patient factors, disease factors, and concomitant medications, providers should work with their patients to choose the best dosing strategy for them.

Abrocitinib is predominately metabolized by CYP2C19 (~53%) and CYP2C9 (~30%); thus, co-administration of abrocitinib with a strong CYP2C19 and CYP2C9 inhibitor is not recommended and may increase the risk of adverse reaction to abrocitinib.8 Case 5 had a history of cerebral infarct and anxiety treated with CYP2C19 inhibitor, clopidogrel, and CYP2C19 substrate, citalopram, respectively. Despite his complex medical history, because of the impact of his severe AD on his QoL and sleep (he only slept three nights/year pre-abrocitinib), he was initiated on 50 mg of abrocitinib to assess safety. He tolerated the regimen without any adverse reactions. The 50 mg abrocitinib allows for further dose titration in patients with poor renal function or who are poor CYP2C19 metabolizers.

While extra caution must be taken, the panel agreed that patients with complex medical histories should not be excluded as potential candidates for abrocitinib without first evaluating the risks and benefits and having a thorough discussion with these patients.

Future Directions

The panel agreed that patient testimonials are highly impactful and educational. Patients are often enthusiastic about sharing their experiences. In the future, it will be important to direct discussions toward more complex AD cases to help healthcare providers choose appropriate dosing strategies and treatment regimens with the proper precautions. Further investigation into AD-associated PIH in individuals with sensitive skin may also help elucidate therapy plans for all skin types. Lastly, one panel member suggested further training of other medical specialties outside of dermatology in order to earlier recognize and appropriately treat AD patients. In particular, emergency medicine (EM) practitioners come in frequent contact with AD patients suffering from recurrent infections or exacerbations. Educating EM providers may allow for faster AD treatment and reduced patient suffering.

Conclusion

The real-world cases presented reflect the expert panel’s clinical experience with abrocitinib for the treatment of patients with moderate-to-severe AD. The panel’s cumulative insight suggests that abrocitinib is a safe, effective, and rapid-acting AD therapy that may be used in all Fitzpatrick skin types and disease stages. Through a multi-option dosing approach, abrocitinib fosters a TTT paradigm that allows patients and providers to form successful, individualized AD treatment plans.

Limitations

The presented cases represent real-world experience with abrocitinib. All outcome measures were reported from providers in the clinic and reflect real-life data rather than data from a controlled, clinical trial environment. Actual experience with abrocitinib may differ with each patient and/or provider. Our expert panel included general dermatologists and did not include specialized pediatric dermatologists. Thus, this discussion does not provide real-world experience in a pediatric setting. Off-label use of abrocitinib is up to the discretion of treating healthcare providers.

Appendix 1


Eczema Area and Severity Index (EASI)

EASI measures extent of body surface area involvement and clinical characteristics of disease.21 The scale assesses four body parts in the following categories: (a) erythema, (b) induration/papulation, (c) excoriation, and (d) lichenification.21 EASI scores may range from 0 to 72 with higher scores representing more severe disease.21


Investigators’ Global Assessment (IGA)

IGA is a 6-point static scale that allows investigators to assess overall disease severity.21 Symptoms such as xerosis, excoriations, erythema, weeping, papulation, and crusting may help inform investigators’ scores.21 Scores range from 0 (clear) to 5 (very severe disease).21


Peak Pruritus Numerical Rating Scale (PP-NRS)

The PP-NRS was developed to evaluate worst itch intensity for adults with moderate-to-severe AD.22 It is a single-item question that asks patients to rate their itch at the worst moment during the past 24 hours on scale from 0 to 10, with 0 being “no itch” and 10 being the “worst itch imaginable”.22 A clinically meaningful response is defined as 4-point change from baseline PP-NRS score.22


Dermatology Life Quality Index (DLQI)

The DLQI is a 10-item questionnaire with high sensitivity, internal consistency, and reliability.21 It inquires patients about how their skin condition affects their daily life, work, and social interactions.21 DLQI scores range from 0 to 30 with higher scores indicating worse quality of life (QoL).21

References



  1. Silverberg JI, Barbarot S, Gadkari A, et al. Atopic dermatitis in the pediatric population: a cross-sectional, international epidemiologic study. Ann Allergy Asthma Immunol. 2021 Apr;126(4):417-428.

  2. Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. 2018 Jun;73(6):1284-1293.

  3. Silverberg JI, Gelfand JM, Margolis DJ, et al. Patient burden and quality of life in atopic dermatitis in US adults: a population-based cross-sectional study. Ann Allergy Asthma Immunol. 2018 Sep;121(3):340-347.

  4. Kobyletzki LBV, Thomas KS, Schmitt, J, et al. What factors are important to patients when assessing treatment response: an international cross-sectional survey. Acta Derm Venereol. 2017 Jan 4;97(1):86-90.

  5. Bieber, T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov. 2022 Jan;21(1):21-40.

  6. Wollenberg A, Barbarot S, Bieber T, et al. Consensus‐based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018 Jun;32(6):850-878.

  7. Papp K, Szepietowski JC, Kircik L, et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J Am Acad Dermatol. 2021 Oct;85(4):863-872.

  8. Cibinqo (abrocitinib) Package Insert. New York, NY: Pfizer Inc.; 2023.

  9. Guttman-Yassky E, Teixeira HD, Simpson EL, et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet. 2021 Jun 5;397(10290):2151-2168.

  10. Simpson EL, Sinclair R, Forman S, et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet. 2020 Jul 25;396(10246):255-266.

  11. Silverberg JI, Simpson EL, Thyssen JP, et al. Efficacy and safety of abrocitinib in patients with moderate-to-severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol. 2020 Aug 1;156(8):863-873.

  12. Bieber T, Simpson EL, Silverberg JI, et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis. N Engl J Med. 2021 Mar 25;384(12):1101-1112.

  13. Simpson EL, Silverberg JI, Nosbaum A, et al. Integrated safety analysis of abrocitinib for the treatment of moderate-to-severe atopic dermatitis from the phase II and phase III clinical trial program. Am J Clin Dermatol. 2021 Sep;22(5):693-707.

  14. Rinvoq (upadacitinib) Package Insert. North Chicago, IL: Abbvie Inc.; 2022.

  15. Wollenberg A, Barbarot S, Bieber T, et al. Consensus‐based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018 May;32(5):657-682.

  16. Shingrix (Herpes Zoster vaccine (non-live recombinant, AS01B adjuvanted) Product Monograph. Mississauga, Ontario; GlaxoSmithKline Inc.; 2022

  17. Kragstrup TW, Glintborg B, Svensson AL, et al. RMD Open. 2022 Feb;8(1):e002236.

  18. Chen ML, Nopsopon T, Akenroye A. Incidence of anti-drug antibodies to monoclonal antibodies in asthma: a systematic review and meta-analysis. J Allergy Clin Immunol Pract. 2023 May;11(5):1475-1484.e20.

  19. Reich K, Silverberg JI, Papp KA, et al. Abrocitinib efficacy and safety in patients with moderate‐to‐severe atopic dermatitis: Results from phase 3 studies, including the long‐term extension JADE EXTEND study. J Eur Acad Dermatol Venereol. 2023 Oct;37(10):2056-2066.

  20. Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017 Jun 10;389(10086):2287-2303.

  21. Rehal B, Armstrong A. Health outcome measures in atopic dermatitis: a systematic review of trends in disease severity and quality-of-life instruments 1985–2010. PLoS One. 2011 Apr 13;6(4):e17520.

  22. Yosipovitch G, Reaney M, Mastey V, et al. Peak Pruritus Numerical Rating Scale: psychometric validation and responder definition for assessing itch in moderate‐to‐severe atopic dermatitis. Br J Dermatol. 2019 Oct;181(4):761-769.


]]>
Casmo Prevention and Management of Four Common Cutaneous Toxicities Associated with Targeted Cancer Therapies: Papulopustular Eruption, Xerosis, Paronychia, and Hand-Foot Skin Reaction https://www.skintherapyletter.com/supplement/casmo-prevention-and-management-of-four-common-cutaneous-toxicities-associated-with-targeted-cancer-therapies-papulopustular-eruption-xerosis-paronychia-and-hand-foot-skin-reaction/ Thu, 24 Aug 2023 21:23:21 +0000 https://www.skintherapyletter.com/?p=14711 Cynthia Fournier MD, FRCPC1, Maxwell B Sauder MD, FRCPC, DABD2, Anneke Andriessen PhD3, Marcus Butler MD4, Joel Claveau MD, FRCPC, DABD5, Tarek Hijal MD, FRCPC6, Charles W Lynde MD, FRCPC7

Affiliations


1Fellow Royal College of Physicians of Canada; Onco-dermatology fellow Princess Margaret Cancer Centre, Toronto, ON, Canada.

2Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Associate Professor, Department of Medicine University of Toronto; Onco-dermatologist, Princess Margaret Cancer Centre, Director, Toronto, ON, Canada.

3Radboud UMC; Nijmegen and Andriessen Consultants, Malden, The Netherlands.

4Medical Oncologist, Medical Oncology Disease Site Lead for Melanoma/Skin Oncology, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre; Assistant Professor, Department of Medicine, University of Toronto; Associate Member, Department of Immunology, University of Toronto, Toronto, ON, Canada.

5Fellow of the Royal College of Physicians of Canada; Diplomate of the American Board of Dermatology; Associate Professor, Department of Medicine, Division of Dermatology, Laval University; Director Melanoma and Skin Clinic, Le Centre Hospitalier Universitaire de Québec, Hôtel-Dieu de Québec, Quebec City, QC, Canada.

6Associate Professor, Department of Oncology, McGill University; Director, Division of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada.

7Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Associate Professor, Department of Medicine University of Toronto, Toronto, ON, Canada; Lynderm Research, Markham, ON, Canada.


Abstract

Introduction: Advances in cancer treatment have contributed to a reduction in mortality but survivors and healthcare providers should be aware of the potential adverse effects of these advanced treatments.

Objectives: The Canadian skin management in oncology (CaSMO) practical recommendation was developed to improve the quality of life for cancer patients and survivors who experience targeted therapy-related cutaneous adverse events.

Methods: The CaSMO advisory board (advisors) identified four common cutaneous adverse events related to targeted therapy and gave practical recommendations for managing these cutaneous adverse effects based on the results of a literature search and clinical expertise.

Results: Papulopustular eruption, xerosis, paronychia, and hand-foot skin reaction were identified as common cutaneous adverse events related to targeted therapy. The advisors provide practical steps for preventing and treating these cutaneous conditions.

Conclusions: The CaSMO practical guidance is for all healthcare providers who treat oncology patients receiving targeted therapy and can be used to help prevent and manage common cutaneous adverse events, thereby improving treatment adherence, quality of life, and outcomes.

Acknowledgments and Disclosure:  This educational supplement to the Journal of Drugs in Dermatology was funded by La Roche Posay Canada.

Keywords: targeted cancer therapy, management of cutaneous adverse events

PDF Download


Introduction

Improved understanding of the molecular basis of numerous cancers has led to the development of targeted therapies. Epidermal growth factor receptor (EGFR) inhibitors, multikinase inhibitors, vascular endothelial growth factor (VEGF) inhibitors, mammalian target of Rapamycin (mTOR) inhibitors, BRAF inhibitors, and MEK inhibitors (Table 1) are all molecular targeted agents that have emerged as effective cancer treatments. As opposed to conventional chemotherapies which usually target rapidly dividing cells and are not specific to cancer cells, targeted therapies more selectively attack cancer cells by inhibiting specific molecules involved in tumor pathogenesis.

Table 1: Targeted therapy categories and specific agents

Targeted therapy categories Specific agents
Epidermal Growth Factor Receptor (EGFR) inhibitors
  • Cetuximab
  • Panitumumab
  • Erlotinib
  • Gefitinib
  • Lapatinib
  • Neratinib
  • Afatinib
  • Osimertinib
  • Pertuzumab
  • Dacomitinib
  • Mobocertinib
  • Canertinib
Multikinase inhibitors
  • Sorafenib
  • Sunitinib
  • Regorafenib
  • Pazopanib
  • Cabozantinib
  • Axitinib
  • Vandetanib
Selective VEGF inhibitors
  • Bevacizumab
  • Ranibizumab
Mammalian target of Rapamycin (mTOR) inhibitors
  • Everolimus
  • Sirolimus
  • Temsirolimus
BRAF inhibitors
  • Dabrafenib
  • Vemurafenib
  • Encorafenib 
MEK inhibitors
  • Trametinib 
  • Cobimetinib 
  • Binimetinib

The increased specificity of these therapies leads to an improved safety profile compared with conventional chemotherapy, with fewer systemic side effects. However, the most prevalent side effect of targeted therapies are skin and appendage toxicities. The targeted therapy cutaneous adverse events (ttCAEs) profile is broad and differs for each specific agent. In general, most common ttCAEs include papulopustular eruption, xerosis, pruritus, hand-foot skin reaction (HFSR), paronychia, and mucositis. Targeted therapies can also lead to uncommon but serious toxicities such as morbilliform exanthema, Stevens-Johnson syndrome, and toxic epidermal necrolysis.

ttCAEs can lead to severe symptoms with profound effects on cosmesis, quality of life, and compliance with cancer medication. Common ttCAEs are not life-threatening toxicities by themselves but can lead to targeted therapy dose reduction, therapeutic holidays, or even permanent discontinuation, which may compromise cancer outcomes.

Targeted therapy toxicities generally are a positive prognostic sign to therapeutic response. CAEs incidence as well as severity are associated with a longer time to progression of cancer (TTP) and increased overall survival (OS).1 Most data show a positive relation between papulopustular eruption incidence and severity and TTP and OS in patients receiving EGFR inhibitors.2-5 The goal for dermatologists and oncologists should be to treat the dermatological toxicities prior to considering dose reduction, interruption, or discontinuation, whenever possible.

While ttCAEs are common, treatments and guidelines are mostly based on reviews, expert consensus, and case series. Very few controlled studies are published on specific treatments to prevent or manage these CAEs. Even more, in most published clinical trials studying targeted therapies, cutaneous side effects are reported as “rash” without details about the clinical appearance and management of specific cutaneous toxicities.

Mechanisms underlying these ttCAEs are poorly understood. Most explanations come from literature on EGFR inhibitors. EGFR is overexpressed in some cancer cells, but is also expressed in normal basal keratinocytes, the outer layers of hair follicles, sebaceous epithelium, and periungual tissues. It plays an essential role in skin physiology and differentiation and proliferation of these tissues. EGFR blockage induces upregulation of IL-1 and TNF-alpha and increases synthesis of other inflammatory chemokines and cytokines, leading to an inflammatory response.6 Apoptosis of normal keratinocytes, abnormal keratinization, and the subsequent inflammatory response could explain the occurrence of papulopustular eruption. EGFR inhibitor-induced xerosis results from abnormal keratinocyte proliferation and differentiation, leading to a deteriorated stratum corneum and a decrease in moisture retention.7, 8 Paronychia pathogenesis is unclear. It could be secondary to skin fragility, leading to onychocryptosis and subsequent paronychial inflammation.9 EGFR inhibitors induce an inflammatory response which could result in paronychia.10 EGFR inhibition-induced abnormal keratinocyte differentiation and proliferation lead to periungual stratum corneum thinning and fragility, resulting in piercing of paronychium and granulation tissue formation.11 EGFR is also involved in the normal healing process, so EGFR blockage leads to abnormal healing which could contribute to excessive periungual granulation tissue.11 Infection does not appear to play a consistent role in the pathogenesis of paronychia.9 HFSR pathophysiology is even less understood. In contrast to hand-foot syndrome induced by chemotherapy agents excreted in sweat, a study on sorafenib showed that this targeted therapy is not excreted through eccrine glands.12

In an era in which there is a growing number of targeted therapy indications and use, it is essential that dermatologists, oncologists, and other physicians know how to manage these common CAEs to enable patients to continue receiving these survival-prolonging therapies and improve their outcomes.

This review article discusses the management of four common CAEs induced by targeted therapy: papulopustular eruption, xerosis, paronychia, and HFSR.

Scope

The CaSMO project aims to improve the quality of life for cancer patients and survivors by offering tools to prevent and manage CAEs.13-16 A general management algorithm to reduce the incidence of all CAEs and maintain healthy skin using general measures and skin care,14 an algorithm to reduce and treat acute radiation dermatitis,15 and an algorithm for the management of hormonal therapy-related CAEs16 were previously published. These algorithms aim to support all health care providers (HCPs) treating oncology patients, including physicians, nurses, pharmacists, and advanced providers. A practical primer followed on prevention, identification, and treatment, including skin care for immune-related CAEs, focusing on isolated pruritus, psoriasiform eruptions, lichenoid eruptions, eczematous eruptions, and bullous pemphigoid.17 The next step in the project was to develop practical guidance for the management of four common CAEs (papulopustular eruption, xerosis, paronychia, and HFSR) in oncology patients receiving targeted therapies.

Methods

The CaSMO advisors convened for a meeting to develop practical guidance for targeted therapy-related CAEs. The advisors used a modified Delphi approach following the AGREE II instrument.18-20

Literature Review

Searches included literature describing current best-practice in improving comfort during targeted therapy, reducing/treating CAEs, and promoting healing of affected skin. Selected literature is clinically relevant to the practical guidance and included guidelines, consensus papers, reviews, and publications describing current best-practice in CAEs-related targeted therapy in the English language from January 2010 to May 2022. Excluded were articles with no original data (unless a review was deemed relevant), articles not dealing with prescription treatment, skincare for cAEs-related to targeted therapy, and publication language other than English.

A dermatologist and physician/scientist conducted searches on PubMed and Google Scholar for English-language literature on May 20 and 21, 2022, using the following AND OR search terms:

Group 1: TKIs OR MKIs OR tyrosine kinase inhibitors OR multikinase inhibitors OR EGFR inhibitor OR VEGF inhibitor OR FGFR inhibitor OR MEK inhibitor OR BRAF inhibitor OR PanRAF inhibitor OR BCR-abl inhibitor OR osimertinib OR afatinib OR dacomitinib OR erlotinib OR gefitinib OR lapatinib OR cetuximab OR panitumumab OR sunitinib OR bevacizumab OR Lenvatinib OR vandetanib OR regorafenib OR sorafenib OR axitinib OR pazopanib OR erdafitinib OR pemigatinib OR trametinib OR cobimetinib OR dabrafenib OR vemurafenib OR belvarafenib OR KIT OR PDGFR OR imatinib OR dasatinib OR nilotinib AND cutaneous adverse event

Group 2: paronychia OR hand-foot skin reaction OR papulopustular rash OR acneiform rash OR xerosis OR pruritus OR rash OR skin toxicities AND targeted therapy

Group 3: prescription medication OR skincare OR topical OR prevention OR treatment OR maintenance OR QOL OR quality of life OR adjunctive OR education OR communication OR communication strategies OR adherence OR concordance OR efficacy OR safety OR tolerability OR skin irritation AND cutaneous adverse event AND targeted therapy

Two reviewers independently evaluated the results of the literature search. The abstracts of 422 articles were reviewed after which 116 were excluded for duplication or poor quality. After a review of the articles in full, 297 remained (Figure 1).

Casmo Prevention and Management of Four Common Cutaneous Toxicities Associated with Targeted Cancer Therapies: Papulopustular Eruption, Xerosis, Paronychia, and Hand-Foot Skin Reaction - image
Figure 1: Systematic literature search results
1Excluded were: Poor quality paper, duplications (in case of an update on a review article the latest version was used).

General Management Principles for Skin Toxicities of Anti-cancer Treatment (Stats), Including Caes Induced by Targeted Therapy

A recently published article by the CaSMO working group reviewed in details general skincare measures to prevent STATs, including CAEs induced by targeted therapies.14 Their preventive algorithm is mainly based on three major behaviors: cleanse, moisturize, and protect. (Tables from the previous publication).

Papulopustular Eruption

EGFR inhibitors and mTOR inhibitors can induce a papulopustular eruption. MEK inhibitor monotherapy is also a common cause whereas BRAF inhibitors rarely induce this toxicity. Combining a BRAF inhibitor to MEK inhibitors significantly decreases the incidence and severity of MEK inhibitor induced papulopustular eruption.21 Papulopustular eruption is the most common toxicity of EGFR inhibitors, affecting 50-100% of patients, depending on the agent.22 Cancer response and survival have a positive correlation with the incidence and severity of the papulopustular eruption in patients receiving EGFR inhibitors.4

Papulopustular eruption, also sometimes referred as acneiform eruption or folliculitis, classically occurs early after the initiation of targeted therapy, in the first 7 to 10 days of treatment. It peaks after two to four weeks, then stabilizes and decreases in intensity after six to eight weeks. A mild papulopustular eruption often persists over months or the eruption may sometimes self-relieve despite continuing targeted therapy. It affects seborrheic and UV-exposed areas, mainly the scalp, face, neck, upper chest, and back. The eruption is characterized by monomorphous inflammatory papules and pustules. Pruritus is a common associated symptom. As opposed to classic acne, it lacks typical comedones and cysts. Papulopustular eruption is dose dependent.

Atypical acneiform eruption warrants bacterial culture and viral swab to exclude bacterial and herpetic infection. It can either be a primary cutaneous infection or a superinfection developing on a pre-existing papulopustular eruption. Infection should be considered when papulopustular eruption is widespread and involves non-seborrheic areas such as upper extremities, lower extremities, abdomen, and buttocks, does not involve the face, lasts longer than eight weeks, appears late after more than 12 weeks of targeted therapy, or is recalcitrant to appropriate treatment.23, 24 Other signs of infection include the presence of vesicles, yellow crusts, discharge, or painful lesions.23, 24

Some trials have studied preventive tools to decrease the incidence and severity of papulopustular eruption (Table 2). A phase II randomized controlled trial (STEPP trial) evaluated a pre-emptive regimen in patients receiving panitumumab, an EGFR inhibitor, for metastatic adenocarcinoma of the colon or rectum.25 Patients were randomized into two groups. One group received a pre-emptive treatment beginning day -1 of panitumumab and continued through weeks 1 to 6 and it consisted of a combination of skin moisturizer daily in the morning, sunscreen before going outdoors, hydrocortisone 1% cream at night, and oral doxycycline 100 mg twice a day. The other group received only reactive treatment deemed necessary by the investigator to manage emergent skin toxicity. The incidence of protocol-specified grade 2 or higher skin toxicities during the 6-week skin treatment period was 29% and 62% for the pre-emptive and reactive groups, respectively. These protocol-specified skin toxicities included pruritus, acneiform dermatitis, skin desquamation, exfoliative dermatitis, paronychia, nail disorder, skin fissures, skin laceration, pruritus, rash, pustular rash, skin infection, skin ulceration, and local infections. Papulopustular eruption was reported less frequently with pre-emptive treatment (77%) comparing to reactive treatment (85%). This preventive regimen should be initiated in patient receiving EGFR inhibitors and MEK inhibitors which are targeted therapies with a higher risk of papulopustular eruption. Another randomized controlled trial evaluated the preventive use of doxycycline to prevent erlotinib-induced acneiform eruption.26 Incidence was comparable between patients receiving doxycycline and the ones receiving the placebo, but doxycycline decreased the eruption severity.

Photoprotection is likely an important preventive tool even though some studies did not show any benefits.27 Patients must avoid using tanning bed. A physical/inorganic sunscreen should be favored instead of chemical/organic sunscreen that can irritate the skin28.

Treatment lines are detailed in Table 2. Typical over the counter and prescribed topical acne treatments such as benzoyl peroxide, retinoid, azelaic acid, and alpha-hydroxy acid should be avoided. These therapies are typically drying and irritating, which may worsen the papulopustular eruption. Topical tazarotene was studied in a cohort of patients on cetuximab.29 Patients applied it on one side of the face and the other side was used as control. Most patients did not experience any improvement with the use of topical tazarotene. Furthermore, the rash was assessed as more severe on the tazarotene side for some patients.

Phototoxicity induced by tetracycline class antibiotics must be taken into consideration in patients receiving targeted therapy. Doxycycline has an overall better tolerance and safety profile than minocycline but comes with a risk of phototoxicity which could potentially worsen the papulopustular eruption. Photoprotection must be reinforced in this setting. Minocycline is another option that does not lead to phototoxicity but has potential serious side effects including autoimmune hepatitis and drug-induced systemic lupus. In patients who cannot commit to strong photoprotective measures or who are living in areas with high ultraviolet index, minocycline may be a better option, but should be given for less than a year to decrease the risk of autoimmune side effects. For all other patients, doxycycline is a better option because of its safety profile. Especially for patients with renal insufficiency, doxycycline is the drug of choice.

Topical dapsone has been studied in patients receiving cetuximab.30 They were randomized to apply dapsone 5% gel to one side of the face and chest twice daily, and a moisturizer to the contralateral side, used as control. All patients were also receiving oral minocycline. A statistically significant reduction in lesion count was observed on the dapsone-treated sides. Dapsone has anti-inflammatory and anti-bacterial properties without the risk of skin atrophy or microbial resistance potentially induced by the prolonged application of topical steroids and antibiotics, respectively.30

Isotretinoin is an effective treatment if tetracyclines or topical treatments fail. A low dose of 0.15-0.35 mg/kg is recommended.31 Tetracyclines should be stopped before starting isotretinoin. Concomitant use of isotretinoin and tetracycline increases the risk of pseudotumor cerebri (idiopathic intracranial hypertension). Isotretinoin has overlapping side effects with targeted therapy such as xerosis and excessive granulation tissue. Isotretinoin-induced xerosis may exacerbate the papulopustular eruption, so the regular application of an emollient should be reinforced. Isotretinoin can also induce photosensitivity, which can worsen the acneiform eruption. Photoprotective measures must be reinforced in patients receiving isotretinoin.

Targeted therapy dosage sometimes needs to be reduced or the medication even needs to be temporarily stopped. If targeted therapy is stopped, it should be restarted when papulopustular eruption is back to a CTCAE severity grades 0 or 1 (papules and/or pustules covering <10% BSA, which may or may not be associated with symptoms of pruritus or tenderness).32 Some recommend restarting targeted therapy at 50% of the initial dosage.33

Table 2: Prevention and treatment recommendations for targeted therapy-induced papulopustular eruption

Papulopustular Eruption

General principles and prevention

  • Gentle skin care using a fragrance-free cleanser close to skin pH (pH 5.5)
  • Emollient at least once a day (twice a day is preferable)
  • Photoprotection (sunscreen with SPF 50+ and other methods)1
  • Consider topical hydrocortisone 1%
  • Consider oral antibiotics in tetracycline class2 (if contraindicated: erythromycin, clarithromycin, or azithromycin)
  • Consider the combination of an emollient, photoprotection, topical hydrocortisone 1%, and oral antibiotics in tetracycline class3

First-line treatment

  • Continue preventive measures
  • Oral antibiotics in tetracycline class (if contraindicated: erythromycin, clarithromycin, or azithromycin4)
  • Topical steroids (low-to-medium potency on face, medium-to-high potency on body)
  • Avoid topical acne treatments (e.g. benzoyl peroxide, retinoids, azelaic acid, or alpha-hydroxy acid)

Second-line treatment

  • Bacterial/viral cultures; treat accordingly (including topical and/or systemic antibiotics and antivirals)
  • Topical dapsone
  • Low-dose oral isotretinoin

Third-line treatment

  • Systemic steroids
  • Acitretin
  • Oral dapsone
  • Dose reduction or intermittent interruption of targeted therapy

1Photoprotection must be reinforced if patients are on doxycycline or isotretinoin with the increased risk of phototoxicity.
2Either doxycycline 100 once daily to BID, minocycline 50-100 mg BID, or tetracycline 500 mg BID.
3STEPP trial regimen should be considered in patients being treated with EGFR inhibitors or MEK inhibitors.25
4There is evidence to support the use of pulse azithromycin 500 mg daily for 3 consecutive days per week.34

Xerosis

All targeted therapies can induce xerosis. This ttCAE is progressive and appears usually one to three months after the initiation of cancer treatment. Xerosis can potentially worsen papulopustular eruptions. It can also lead to pruritus, asteatotic eczema, and painful fissures, especially on the hands and feet.

Emollient containing humectant such as urea and lactic acid can be effective to manage xerosis. Fissures are challenging to treat. They can be symptomatic with a burning sensation and significant pain. Emollient and barrier cream are essential. Cyanoacrylate glue, more commonly known as liquid skin glue or liquid bandage, can be applied directly in the fissures to decrease the healing time. Hydrocolloid dressing is another treatment option.

Pruritus induced by targeted therapy is challenging to manage and can be multifactorial. A detailed discussion about pruritus is beyond the scope of this article.

Table 3: Prevention and treatment recommendations for targeted therapy-induced xerosis

Xerosis

General principles and prevention

  • Gentle skin care regimen using a fragrance-free cleanser close to skin pH (pH 5.5), such as a syndet
  • Limited shower time: avoid hot showers, hot baths, saunas, and other irritants
  • Regular use of an emollient (cream, balm, or ointment are preferred)

First-line treatment

  • Continue preventive measures
  • Ensure patient is using an appropriate emollient in adequate amount and frequency

Second-line treatment

  • Topical steroids if associated dermatitis 
  • Cyanoacrylate glue for fissures

Paronychia

Paronychia is a late CAE that can be induced by EGFR inhibitors, MEK inhibitors, mTOR inhibitors, multikinase inhibitors, and VEGF inhibitors. It usually appears after one to two months of targeted therapy with painful periungual inflammation characterized by erythema and swelling. The first digit and first toe are most affected. Paronychia is highly morbid with severe pain and functional limitation. It can lead to the formation of excessive friable granulation tissue, onychocryptosis/ingrown nail, and periungual abscess. It is a common cause of targeted therapy dose reduction or discontinuation. Bacterial and fungal superinfections represent a common complication. If a superinfection is suspected, a bacterial and fungal culture must be done, and the infection treated accordingly.

A few trials have evaluated paronychia treatment. In a retrospective cohort study evaluating the topical use of timolol 0.5% gel twice daily under occlusion to treat targeted therapy-induced paronychia and/or periungueal pyogenic granuloma, 15% of patients were considered in complete response (2/13 patients), 46% in partial response (6/13) and 39% in failure (5/13).35

Surgical interventions may be needed for severe or refractory cases. In a retrospective case series, partial matricectomy, nail avulsion, debridement/clipping, and incision and drainage were performed with resolution rates of 100% (11/11), 38.5% (5/13), 12.5% (1/8), and 0% (0/4), respectively.36

Table 4: Prevention and treatment recommendations for targeted therapy-induced paronychia and periungual hypergranulation

Paronychia

General principles and prevention

  • Gentle nail care. Avoid trauma such as cutting nails too short, aggressive manicure and pedicure, artificial nails, friction, excessive pressure, or biting nails
  • Apply a moisturizer to periungual skin and cuticle to create water-proof layer
  • Consider podiatrist evaluation

First-line treatment

  • Continue preventive measures
  • Antiseptic soaks (dilute bleach/dilute white vinegar soaks) or topical povidone iodine 2%
  • High-potency topical steroids (if there is no local infection)
  • Topical antibiotics (mupirocin, fusidic acid, or gentamycin ophthalmic drops)
  • Consider combination of topical steroids and antibiotics +/- antifungal
  • If infection is suspected, culture-driven topical and systemic antibiotics and antifungals
  • For periungual hypergranulation:
    • High potency topical steroids
    • Topical beta-blockers using timolol 0.5% gel twice a day under occlusion

Second-line treatment

  • Incision, drainage, and culture if abscess
  • Culture-driven antibiotics
  • For periungual hypergranulation:
    • Silver nitrate
    • Shave or curettage and eletrodessication
    • Cryotherapy
    • Topical trichloroacetic acid (TCA)

Third-line treatment

  • Further surgical procedures may be necessary: 
    • Partial or full nail avulsion
    • Partial matricectomy using phenol

Hand Foot Skin Reaction

HFSR can be induced by multikinase inhibitors, VEGF inhibitors, BRAF inhibitors, and one specific EGFR inhibitor (lapatinib). It usually appears after one-to-six weeks of treatment and has three overlapping clinical phases. It first presents with an inflammatory phase described as symmetrical well-defined erythema over palms and soles with occasional painful tense blisters. Then, it evolves to painful yellowish plaques with surrounding erythema. This is followed by hyperkeratotic plaques more pronounced over pressure points and friction-prone areas on both hands and feet. Soles are more commonly involved than palms. HFSR is most severe with first cycles of treatment and tends to decrease in severity and incidence with subsequent cycles.37 HFSR is another highly morbid toxicity with significant tenderness and functional impairment. It may lead to dose reduction, temporary interruption, or even permanent discontinuation of targeted therapy, compromising cancer outcomes.

HFSR, also referred as acquired palmoplantar keratoderma in few articles, must be differentiated from hand foot syndrome and periarticular thenar erythema with onycholysis (PATEO) that are also STATs involving hands and feet, but with different clinical presentations and causal medications (Table 5).

Table 5: Description of hand foot skin reaction (HFSR), hand foot syndrome, and periarticular thenar erythema with onycholysis (PATEO)

HFSR Hand foot syndrome

PATEO38, 39

Triggering medications Multikinase inhibitors, BRAF inhibitors Traditional cytotoxic chemotherapies including cytarabine, capecitabine, anthracyclines, fluoropyrimidines, and taxanes Traditional cytotoxic chemotherapies, specifically paclitaxel and docetaxel
Onset after drug initiation Early (1-6 weeks) Delayed (weeks to months) Days to months
Clinical presentation Erythema, hyperkeratosis, bullae, and pain in a symmetrical pattern and localized to palmoplantar areas prone to friction and trauma. Feet > hands

Dysesthesia, erythema, edema, desquamation, and scaling in a symmetrical and diffuse pattern. Hands > feet

Palmar erythema mainly over the thenar and hypothenar eminences, violaceous coloration predominantly of the dorsum of the hands, especially over the joints of the hands and around the Achilles tendon and perimaleolar area, and nail changes such as subungual hemorrhages, Beau lines, onycholysis, and onychomadesis

Histopathology findings

Dyskeratotic keratinocytes, epidermal acanthosis, papillomatosis, and parakeratosis

Damage of the eccrine gland and varying degrees of epidermal necrosis

Hyperkeratosis, acanthosis, necrotic keratinocytes, focal vacuolar degeneration of the basal layer, and lichenoid inflammatory infiltrate

HFSR preventive and management tools are described in Table 6. One multicenter randomized controlled trial evaluated the preventive application of 10% urea three times a day on hands and feet in patients receiving sorafenib for advanced hepatocellular carcinoma.40 Incidence of any grade HFSR within twelve weeks of starting sorafenib was significantly lower in the urea group compared to the group with best supportive care alone excluding the use of any cream. Incidence of grades 2 and 3 HFSR was also lower in the urea group. Pre-emptive visits to a podiatrist should be considered, especially for patients starting a targeted therapy associated with a high risk of HFSR (vemurafenib for example).

HFSR has two main components, hyperkeratosis and inflammation, and they guide treatments. Hyperkeratosis is treated with topical keratolytics or retinoids. Inflammation is treated with high potency topical steroids. Oral acitretin has been described in a retrospective study for the treatment of refractory HFSR induced by multikinase inhibitors.41 It was effective in seven out of eight patients.

Combining a BRAF inhibitor with a MEK inhibitor decreases the incidence and severity HFSR induced by BRAF inhibitor.42 Approved combinations of BRAF inhibitors and MEK inhibitors are dabrafenib with trametinib, vemurafenib with cobimetinib, and encorafenib and binimetinib. These combinations are used in the adjuvant or active settings for stage III and stage IV melanoma harboring a BRAF V600 mutation.

Table 6: Prevention and treatment recommendations for targeted therapy-induced hand foot skin reaction

Hand Foot Skin Reaction

General principles and prevention

  • Cream with urea 10% 3 times a day on both hands and feet
  • Avoid trauma:
    • activities that stress the extremities (e.g. long walks, running, aerobics, heavy carrying without gloves)
    • friction, pressure, hot water, extremes of temperature
  • Avoid irritation: skin irritants such as solvents and disinfectants, normal soap
  • Foot and hand care:
    • well-fitting shoes
    • orthopedic shoes/inserts, gel insoles
    • prophylactic removal of pre-existing hyperkeratotic lesions on hands and feet

First-line treatment

  • Increase the concentration of topical keratolytic (salicylic acid 3-10%, lactic acid 5-8%, or urea 10-50%)
  • Topical retinoid
  • For erythematous component: high-potency topical steroid
  • If blisters: drain as required

Second-line treatment

  • Oral retinoid (e.g. acitretin, alitretinoin if available)
  • Hydrocolloid dressing for erosion or bullae

Third-line treatment

  • Systemic steroids
  • Dose reduction or interruption of targeted therapy

Conclusion

Cancer treatments are constantly evolving, and targeted molecular therapy indications are increasing. Targeted therapies are safer than conventional chemotherapies, but they come with a high risk of CAEs that can lead to poor quality-of-life and cancer treatment dose reduction or even discontinuation, compromising cancer outcomes. This article aims to provide physicians information on frequent skin toxicities associated with targeted cancer therapies, including preventing and treating these CAEs. With this knowledge, dermatologists, medical oncologists, and other physicians can manage ttCAEs with confidence, thereby improving quality of life, treatment adherence, and cancer outcomes.

References



  1. Granito A, Marinelli S, Negrini G, Menetti S, Benevento F, Bolondi L. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Therap Adv Gastroenterol. 2016 Mar;9(2):240-9. doi: 10.1177/1756283X15618129. PMID: 26929785; PMCID: PMC4749854.

  2. Pérez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, Rigas J, Clark GM, Santabárbara P, Bonomi P. Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer. J Clin Oncol. 2004 Aug 15;22(16):3238-47. doi: 10.1200/JCO.2004.11.057. PMID: 15310767.

  3. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004 Jan 1;22(1):77-85. doi: 10.1200/JCO.2004.06.075. PMID: 14701768.

  4. Lenz HJ, Van Cutsem E, Khambata-Ford S, Mayer RJ, Gold P, Stella P, Mirtsching B, Cohn AL, Pippas AW, Azarnia N, Tsuchihashi Z, Mauro DJ, Rowinsky EK. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol. 2006 Oct 20;24(30):4914-21. doi: 10.1200/JCO.2006.06.7595. PMID: 17050875.

  5. Wacker B, Nagrani T, Weinberg J, Witt K, Clark G, Cagnoni PJ. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res. 2007 Jul 1;13(13):3913-21. doi: 10.1158/1078-0432.CCR-06-2610. PMID: 17606725.

  6. Lenz HJ. Anti-EGFR mechanism of action: antitumor effect and underlying cause of adverse events. Oncology (Williston Park). 2006 Apr;20(5 Suppl 2):5-13. PMID: 16736978.

  7. Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer: Part II. Targeted therapy. J Am Acad Dermatol. 2014 Aug;71(2):217.e1-217.e11; quiz 227-8. doi: 10.1016/j.jaad.2014.04.013. PMID: 25037801.

  8. Owczarek W, Słowińska M, Lesiak A, Ciążyńska M, Maciąg A, Paluchowska E, Marek-Józefowicz L, Czajkowski R. The incidence and management of cutaneous adverse events of the epidermal growth factor receptor inhibitors. Postepy Dermatol Alergol. 2017 Oct;34(5):418-428. doi: 10.5114/ada.2017.71106. Epub 2017 Oct 31. PMID: 29507555; PMCID: PMC5831275.

  9. Hu JC, Sadeghi P, Pinter-Brown LC, Yashar S, Chiu MW. Cutaneous side effects of epidermal growth factor receptor inhibitors: clinical presentation, pathogenesis, and management. J Am Acad Dermatol. 2007 Feb;56(2):317-26. doi: 10.1016/j.jaad.2006.09.005. Epub 2006 Dec 1. PMID: 17141360.

  10. Barton-Burke M, Ciccolini K, Mekas M, Burke S. Dermatologic Reactions to Targeted Therapy: A Focus on Epidermal Growth Factor Receptor Inhibitors and Nursing Care. Nurs Clin North Am. 2017 Mar;52(1):83-113. doi: 10.1016/j.cnur.2016.11.005. PMID: 28189168; PMCID: PMC5645079.

  11. Robert C, Sibaud V, Mateus C, Verschoore M, Charles C, Lanoy E, Baran R. Nail toxicities induced by systemic anticancer treatments. Lancet Oncol. 2015 Apr;16(4):e181-9. doi: 10.1016/S1470-2045(14)71133-7. PMID: 25846098.

  12. Jain L, Gardner ER, Figg WD, Chernick MS, Kong HH. Lack of association between excretion of sorafenib in sweat and hand-foot skin reaction. Pharmacotherapy. 2010 Jan;30(1):52-6. doi: 10.1592/phco.30.1.52. PMID: 20030473; PMCID: PMC3542635.

  13. Sauder MB, Addona M, Andriessen A, Butler M, Claveau J, Feugas N, et al. The role of skin care in oncology patients. Skin Therapy Lett. 2020 Sep 30;S Oct(10):1-12.

  14. Sauder MB, Andriessen A, Claveau J, Hijal T, Lynde CW. Canadian skin management in oncology (CaSMO) algorithm for patients with oncology treatment-related skin toxicities. Skin Therapy Lett. 2021 Mar 15;S March 21:1-10.

  15. Hijal T, Sauder MB, Andriessen A, Claveau J, Lynde CW. Canadian Skin Management in Oncology Group (CaSMO) algorithm for the prevention and management of acute radiation dermatitis. Skin Therapy Lett. 2021 Nov 1;S Nov(11):1-13.

  16. Claveau J, Sauder MB, Andriessen A et al. CaSMO algorithm for management of hormonal therapy-related cutaneous adverse effects in oncology patients. Skin Therapy Lett. 2022 Nov 1;S Nov(11):1-10.

  17. Sauder MB, Claveau J, Buttler M et al. CaSMO management of cutaneous toxicities associated with immune checkpoint inhibitors : A practical primer. Skin Therapy Lett. 2022 Sept 1;S Sept(9):1-12.

  18. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in healthcare. CMAJ. 2010 Dec 14;182(18):E839-842. doi:10.1503/cmaj.090449

  19. Trevelyan EG, Robinson N. Delphi methodology in health research: how to do it? Eur J Integr Med. 2015 Aug;7(4):423-428. doi:10.1016/j.eujim.2015.07.002

  20. Smith Begolka WS, Elston DM, Beutner KR. American Academy of Dermatology evidence-based guideline development process: responding to new challenges and establishing transparency. J Am Acad Dermatol. 2011 Jun;64(6):e105-e112. doi:10.1016/j.jaad.2010.10.029

  21. Liu RC, Consuegra G, Fernández-Peñas P. Management of the cutaneous adverse effects of antimelanoma therapy. Melanoma Manag. 2017 Dec;4(4):187-202. doi: 10.2217/mmt-2017-0015. Epub 2017 Nov 22. PMID: 30190925; PMCID: PMC6094689.

  22. Sanmartín O. Skin Manifestations of Targeted Antineoplastic Therapy. Curr Probl Dermatol. 2018;53:93-104. doi: 10.1159/000479198. Epub 2017 Nov 7. PMID: 29131041.

  23. Lacouture ME, Sibaud V, Gerber PA, van den Hurk C, Fernández-Peñas P, Santini D, Jahn F, Jordan K; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines☆. Ann Oncol. 2021 Feb;32(2):157-170. doi: 10.1016/j.annonc.2020.11.005. Epub 2020 Nov 25. PMID: 33248228.

  24. Grávalos C, Sanmartín O, Gúrpide A, España A, Majem M, Suh Oh HJ, Aragón I, Segura S, Beato C, Botella R. Clinical management of cutaneous adverse events in patients on targeted anticancer therapies and immunotherapies: a national consensus statement by the Spanish Academy of Dermatology and Venereology and the Spanish Society of Medical Oncology. Clin Transl Oncol. 2019 May;21(5):556-571. doi: 10.1007/s12094-018-1953-x. Epub 2018 Oct 3. PMID: 30284232.

  25. Lacouture ME, Mitchell EP, Piperdi B, Pillai MV, Shearer H, Iannotti N, Xu F, Yassine M. Skin toxicity evaluation protocol with panitumumab (STEPP), a phase II, open-label, randomized trial evaluating the impact of a pre-Emptive Skin treatment regimen on skin toxicities and quality of life in patients with metastatic colorectal cancer. J Clin Oncol. 2010 Mar 10;28(8):1351-7. doi: 10.1200/JCO.2008.21.7828. Epub 2010 Feb 8. PMID: 20142600.

  26. Deplanque G, Chavaillon J, Vergnenegre A, et al. CYTAR: a randomized clinical trial evaluating the pre- ventive effect of doxycycline on erlotinib-induced fol- liculitis in non-small cell lung cancer patients. 2010 ASCO Annual Meeting. J Clin Oncol. 2010;28:15s (suppl; abstr 9019).

  27. Jatoi A, Thrower A, Sloan JA, Flynn PJ, Wentworth-Hartung NL, Dakhil SR, Mattar BI, Nikcevich DA, Novotny P, Sekulic A, Loprinzi CL. Does sunscreen prevent epidermal growth factor receptor (EGFR) inhibitor-induced rash? Results of a placebo-controlled trial from the North Central Cancer Treatment Group (N05C4). Oncologist. 2010;15(9):1016-22. doi: 10.1634/theoncologist.2010-0082. Epub 2010 Aug 26. PMID: 20798191; PMCID: PMC3228043.

  28. Ouwerkerk J, Boers-Doets C. Best practices in the management of toxicities related to anti-EGFR agents for metastatic colorectal cancer. Eur J Oncol Nurs. 2010 Sep;14(4):337-49. doi: 10.1016/j.ejon.2010.03.004. Epub 2010 May 23. PMID: 20580896.

  29. Scope A, Agero AL, Dusza SW, Myskowski PL, Lieb JA, Saltz L, Kemeny NE, Halpern AC. Randomized double-blind trial of prophylactic oral minocycline and topical tazarotene for cetuximab-associated acne-like eruption. J Clin Oncol. 2007 Dec 1;25(34):5390-6. doi: 10.1200/JCO.2007.12.6987. PMID: 18048820.

  30. Belum VR, Marchetti MA, Dusza SW, Cercek A, Kemeny NE, Lacouture ME. A prospective, randomized, double-blinded, split-face/chest study of prophylactic topical dapsone 5% gel versus moisturizer for the prevention of cetuximab-induced acneiform rash. J Am Acad Dermatol. 2017 Sep;77(3):577-579. doi: 10.1016/j.jaad.2017.03.039.

  31. Caruana M, Hatami A, Marcoux D, Perreault S, McCuaig CC. Isotretinoin for the treatment of severe acneiform eruptions associated with the MEK inhibitor trametinib. JAAD Case Rep. 2020 Jul 23;6(10):1056-1058.

  32. Freites-Martinez A, Santana N, Arias-Santiago S, Viera A. Using the Common Terminology Criteria for Adverse Events (CTCAE – Version 5.0) to Evaluate the Severity of Adverse Events of Anticancer Therapies. Actas Dermosifiliogr (Engl Ed). 2021 Jan;112(1):90-92. English, Spanish. doi: 10.1016/j.ad.2019.05.009. Epub 2020 Sep 3. PMID: 32891586.

  33. Varvaresou A, Iakovou K, Mellou F, Myrogiannis D, Papageorgiou S. Targeted therapy in oncology patients and skin: Pharmaceutical and dermocosmetic management. J Cosmet Dermatol. 2020 Apr;19(4):782-788. doi: 10.1111/jocd.13211. Epub 2019 Nov 26. PMID: 31769600.

  34. Nikolaou V, Strimpakos AS, Stratigos A, Katsambas A, Antoniou C, Syrigos KN. Azithromycin pulses for the treatment of epidermal growth factor receptor inhibitor-related papulopustular eruption: an effective and convenient alternative to tetracyclines. Dermatology. 2012;224(4):315-9. doi: 10.1159/000338865. Epub 2012 Jun 12. PMID: 22699716.

  35. Sibaud V, Casassa E, D’Andrea M. Are topical beta-blockers really effective “in real life” for targeted therapy-induced paronychia. Support Care Cancer. 2019 Jul;27(7):2341-2343. doi: 10.1007/s00520-019-04690-8. Epub 2019 Mar 7. PMID: 30847700.

  36. Hanania HL, Pacha O, Heberton M, Patel AB. Surgical Intervention for Paronychia Induced by Targeted Anticancer Therapies. Dermatol Surg. 2021 Jun 1;47(6):775-779. doi: 10.1097/DSS.0000000000003036. PMID: 34029250.

  37. Chanprapaph K, Rutnin S, Vachiramon V. Multikinase Inhibitor-Induced Hand-Foot Skin Reaction: A Review of Clinical Presentation, Pathogenesis, and Management. Am J Clin Dermatol. 2016 Aug;17(4):387-402. doi: 10.1007/s40257-016-0197-1. PMID: 27221667.

  38. Rzepecki AK, Franco L, McLellan BN. PATEO syndrome: periarticular thenar erythema with onycholysis. Acta Oncol. 2018 Jul;57(7):991-992. doi: 10.1080/0284186X.2017.1420912. Epub 2017 Dec 28. PMID: 29283012.

  39. Rodríguez-Lomba E, Molina-López I, Suárez-Fernández R, Baniandrés-Rodríguez O. Periarticular Thenar Erythema and Onycholysis Syndrome: A Manifestation of Taxane-Induced Cutaneous Toxicity. Actas Dermosifiliogr. 2017 Jul-Aug;108(6):595-597. English, Spanish. doi: 10.1016/j.ad.2016.11.014. Epub 2017 Jan 20. PMID: 28117052.

  40. Ren Z, Zhu K, Kang H, Lu M, Qu Z, Lu L, Song T, Zhou W, Wang H, Yang W, Wang X, Yang Y, Shi L, Bai Y, Guo X, Ye SL. Randomized controlled trial of the prophylactic effect of urea-based cream on sorafenib-associated hand-foot skin reactions in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015 Mar 10;33(8):894-900. doi: 10.1200/JCO.2013.52.9651. Epub 2015 Feb 9. PMID: 25667293.

  41. Said JT, Singer S, Iannattone L, Sauder M, LeBoeuf NR. Outcomes of Acitretin Treatment for Refractory Multikinase Inhibitor-Induced Hand-Foot Skin Reaction. JAMA Dermatol. 2022 Jul 1;158(7):824-826. doi: 10.1001/jamadermatol.2022.1425. PMID: 35544124; PMCID: PMC9096683.

  42. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ, Chiarion Sileni V, Lebbe C, Mandalà M, Millward M, Arance A, Bondarenko I, Haanen JB, Hansson J, Utikal J, Ferraresi V, Kovalenko N, Mohr P, Probachai V, Schadendorf D, Nathan P, Robert C, Ribas A, DeMarini DJ, Irani JG, Casey M, Ouellet D, Martin AM, Le N, Patel K, Flaherty K. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014 Nov 13;371(20):1877-88. doi: 10.1056/NEJMoa1406037. Epub 2014 Sep 29. PMID: 25265492.


]]>
Managing Psoriasis with Topical Agents – Where Do We Stand? https://www.skintherapyletter.com/psoriasis/managing-with-topical-agents-where-do-we-stand/ Wed, 26 Jul 2023 09:43:06 +0000 https://www.skintherapyletter.com/?p=14512 80%) and do not require systemic treatment, these cases can still be particularly challenging to treat as topical therapies present limitations, including efficacy and administration, leading to poor long-term treatment compliance and unsatisfactory treatment responses. The intent of this paper is to provide physicians with a clinically relevant review of the currently available and newly developed topical therapies...]]> Sofianne Gabrielli, MSc1; Charles Lynde, MD2-4; Natalie Cunningham, MD5; Pierre-Luc Dion, MD6; Christina Han, MD7; Sameh Hanna, MD2,8; Ian Landells, MD9; Andrei Metelitsa, MD10-12; Marni Wiseman, MD13,14; Geeta Yadav, MD15-17; Zeinah AlHalees, MD18; Elena Netchiporouk, MD, MSc18

Affiliations


1Faculty of Medicine, McGill University, Montreal, QC, Canada

2Probity Medical Research Inc., Waterloo, ON, Canada

3Division of Dermatology, Western University, London, ON, Canada

4Lynde Institute for Dermatology, Markham, ON, Canada

5Division of Clinical Dermatology & Cutaneous Science, Department of Medicine, Dalhousie University and IWK Health Centre, NS, Canada

6Division of Dermatology, Université Laval, Québec, QC, Canada

7Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada

8Division of Dermatology, University of Toronto; Dermatology on Bloor, Toronto, ON, Canada

9Memorial University of Newfoundland and Nexus Clinical Research, St John’s, NL, Canada

10Beacon Dermatology, Calgary, AB, Canada

11Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB, Canada

12Probity Medical Research, Calgary, AB, Canada

13Section of Dermatology, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada

14SKiNWISE Dermatology, Winnipeg, MB, Canada

15Division of Dermatology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada

16FACET Dermatology, Toronto, ON, Canada

17Division of Dermatology, Women’s College Hospital, Toronto, ON, Canada

18Division of Dermatology, McGill University Health Center, Montreal, QC, Canada


Conflicts of Interest


SG: None.

CL: AbbVie, Altius, Amgen, Aralez, Arcutis, Bausch Health, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Cipher, Dermavant, Eli Lilly, Fresnius Kabi, GSK, Innovaderm, Intega Skin, Janssen, Kyowa, La Roche Posay, Leo, L’Oreal, Medexus, Merck, P&G, Pediapharm, Regeneron, Roche, Sanofi Genzyme, Sentrex, Teva, Tribute, UCB, Valeant, Viatris, Volo Health.

NC: Advisor, consultant, and/or speaker for AbbVie, Arcutis, Bausch Health, Bristol Myers Squibb, Eli Lilly, Galderma, Janssen, Leo Pharma, L’Oreal, Novartis, Pfizer, Sanofi Genzyme, Sun Pharma, UCB.

PLD: Advisor, consultant, and/or speaker for AbbVie, Amgen, Aralez, Arcutis, Bristol Myers Squibb, Eli Lilly, GSK, Janssen, Leo, Novartis, Pfizer, Sanofi Genzyme, Sun Pharma, UCB, and Vichy.

CH: AbbVie, Arcutis, Amgen, Bausch Health, Celgene, Galderma, Janssen, Leo, Lilly, Novartis, Sanofi Genzyme, Sun Pharma, UCB, Xyon.

SH: AbbVie, Akros, Allergan, Altius Healthcare, Amgen, Aralez, Arcutis, Bausch Health, Bristol Myers Squibb, Boehringer Ingelheim, Biopharma, Caliway, Celgene, Coherus, Concert Pharma, Cutanea, Dermira, Galapagos, Galderma, Glenmark, Incyte, Janssen, Leo, Lilly, Lumenis, Merz, Novartis, Pedia-Pharm, Pfizer, Prollenium, Regeneron, Revanesse, Reistone, Sandoz, Sanofi, Sun Pharma, UCB, Vichy.

IL: AbbVie, Amgen, Boehringer Ingelheim, Celgene, Eli Lilly, Galderma, GSK-Stiefel, Janssen, LEO Pharma, Merck, Novartis, Pfizer, Sanofi Genzyme, and Valeant.

AM: Abbvie, Amgen, Bausch Health, Bristol Myers Squibb, Eli Lilly, Janssen, Leo, Novartis, Sun Pharma, UCB.

MCW: AbbVie, Amgen, Bausch Health, Celgene, Cipher, Eli Lilly, Galderma, Janssen, Leo, Merck, Novartis, Pfizer, Sanofi Genzyme, SUN Pharma, UCB, and Valeant.

GY: AbbVie, Amgen, Aralez, Arcutis, Bausch Health, Bioderma, Bristol Myers Squibb, Byrdie, Galderma, Incyte, Janssen, Johnson & Johnson, Leo, Medexus, Novartis, Pfizer, Sanofi-Regeneron, Sun Pharma, UCB.

ZH: None.

EN: Advisory board/speaker/consultant and/or received investigator-initiated educational and/or research funding from AbbVie, Bausch Health, Beiersdorf, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Galderma, Janssen, Leo, Medexus, Novartis, Pfizer, Sanofi Genzyme, Sun Pharma, and UCB.


Abstract

Psoriasis vulgaris is a chronic, immune-mediated inflammatory skin disease affecting 2-4% of the Canadian population. Lifelong management is required. While most psoriasis vulgaris cases are mild-to-moderate (>80%) and do not require systemic treatment, these cases can still be particularly challenging to treat as topical therapies present limitations, including efficacy and administration, leading to poor long-term treatment compliance and unsatisfactory treatment responses. The intent of this paper is to provide physicians with a clinically relevant review of the currently available and newly developed topical therapies for psoriasis, the practice guidelines for topical management of mild-to-moderate psoriasis, and the common pitfalls and mitigation strategies to encourage long-term treatment compliance.

PDF Download


Introduction

Psoriasis is a common immune-mediated skin disease affecting ~2-4% of the population in North America.1 In nearly one-third of cases, disease begins during the first 2 decades of life and follows a chronic and persistent course, resulting in high cumulative lifetime disability.2 Psoriasis is divided into 4 major clinical forms, including plaque psoriasis, guttate psoriasis, erythrodermic psoriasis and pustular psoriasis.3 Plaque psoriasis represents >90% of cases and will be the focus of this review. Classically, plaque psoriasis affects the trunk as well as the extensor surfaces of the elbows and knees; it can also affect other body sites, giving rise to regional variants such as scalp, face, intertriginous, palmoplantar, genital and nail psoriasis.3

Because psoriasis is often localized to visible and/or special body sites (knees, elbows, trunk and scalp) and is commonly associated with pain and itch, it often causes significant physical and psychological burdens.4 Stigmatization is common and contributes to poor health-related quality of life (HRQoL), elevated risk of multiple health comorbidities, and increased barrier to treatment.5 Indeed, a recent Global Burden of Disease (GBD) study ranked psoriasis as the second contributor to all skin-related Disability Adjusted Life Years (DALYs).6 The GBD study highlighted an increase in prevalence and morbidity of psoriasis globally, with North America and Europe being particularly affected, emphasizing the significant burden that psoriasis imposes on both individuals and society as a whole.6

Mild, moderate, and severe psoriasis are defined as plaques affecting <3%, between 3-10%, and >10% of body surface area (BSA), respectively.1 Much progress has been realized in regards to managing severe disease with the approval of numerous advanced systemic therapies, including biologics and small molecules.7 Unfortunately, in contrast to severe disease, there has been very limited advancement in the management of mild-to-moderate disease, which affects >80% of the psoriatic patient population.8,9 Mild psoriasis is typically managed with lifelong skin-directed topical therapies.10 Topical therapies are also often used to treat severe psoriasis vulgaris, either as monotherapy or as an adjunct to phototherapy and/or systemic therapy.10

The most commonly used topical therapies in psoriasis include corticosteroids, vitamin D3 analogues, retinoids, calcineurin inhibitors, keratolytics and tar. Multiple fixed-ingredient combination products have become commercially available in the last 20 years with the aim to overcome challenges related to lack of efficacy, compliance and adverse events.11

Our objective is to review: 1) the currently available and newly developed topical therapies, both single and fixed-dose combination products; 2) clinical practice guidelines specific to the topical treatment of psoriasis; and 3) common pitfalls and mitigation strategies when managing psoriasis with topical therapies. While we recognize the importance of behavioural modification and skin care in the management of psoriasis vulgaris of all severities, we refer the reader to the review article by Ko et al. on the topic.12

Literature Search

This narrative literature review included studies that examined currently available therapies for psoriasis from 2010 to present. The review was conducted using the PubMed and Embase databases with the following search terms: (psoriasis) AND [(corticosteroids) OR (topical corticosteroids) OR (topical corticosteroids AND salicylic acid) OR (topical corticosteroids AND coal tar) OR (calcipotriol) OR (calcitriol) OR (tacalcitol) OR (pimecrolimus) OR (tacrolimus) OR (tazarotene) OR (retinoids) OR (corticosteroid* AND calcipotriol) OR (corticosteroid* AND calcitriol) OR (corticosteroids AND tazarotene) OR (roflumilast) OR (tapiranof) OR (topical treatment)] as either keywords or MeSH terms. Clinicaltrials.gov website was also searched for ongoing Phase II and III clinical trials. References of identified manuscripts were manually extracted to identify additional articles. Only articles published in English were considered. Articles were included if they reported on treatment of psoriasis in humans, regardless of study type. All publications were independently assessed by SG and EN first by screening titles, then abstract, followed by full-length manuscripts. Any discrepancies were discussed and resolved.

Topical Therapies for Psoriasis – Our Current Toolbox

Psoriasis is a chronic disease that requires a life-long treatment. Most patients are managed with topical treatments, therefore, it is important to recognize all presently available therapeutic options, taking into account their respective efficacy, safety profile, and usage considerations. Currently, available treatments that will be discussed include topical corticosteroids (TCS), vitamin D3 analogues, calcineurin inhibitors (TCI), tar-based preparations, retinoids, and combination therapies.13 These therapies can be used to induce skin clearance and to maintain disease control.14 Monotherapies with dithranol and salicylic acid will not be discussed, as their clinical use is limited. A clinical timeline of topical therapies for psoriasis is provided in Figure 1. This section will first discuss efficacy and safety considerations of monotherapies followed by combination treatments. Novel therapies, established or previously published guidelines for topical medications use and general recommendations to improve compliance are discussed in following sections.

Managing Psoriasis with Topical Agents - Where Do We Stand? - image
Figure 1. Clinical timeline of topical therapies for psoriasis

Monotherapies

Topical Corticosteroids (TCS)

TCS have been used to treat psoriasis for over 60 years.15 TCS exert broad anti-inflammatory, immunosuppressive, and antimitotic effects.16 The most recent systematic review that we have identified focusing on TCS efficacy and safety in psoriasis dates back to 2012.15 It included 50 randomized controlled trials (RCTs), of which only 11 were placebo controlled. Potent and ultra-potent TCS were used in different formulations to induce and/or maintain disease control. Only 5 studies used the Psoriasis Area and Severity Index (PASI) assessment tool to measure efficacy outcomes. The mean percentage change in the PASI from baseline to 4-8 weeks ranged from 45-60%. However, the overall reported efficacy rating varied greatly depending on the study. An added benefit of occlusion was suggested (1 study), whereas no efficacy difference was established between different vehicles (2 studies). Three studies confirmed that weekend (or episodic) TCS treatment after achieving skin clearance was valuable to prevent plaque recurrence in 30-40% of patients at 6 months.

Since this publication, we identified 2 additional RCTs.17,18 Desoximetasone 0.25% spray twice daily (BID) demonstrated statistically significant clinical success compared to the vehicle as measured by Physician Global Assessment (PGA) score 0/1 at 4 weeks (39% vs. 7%, respectively).17 Efficacy was better among compliant patients who received reminders compared to those that were not reminded, suggesting that compliance is an important barrier to treatment success.18-20 Another RCT compared once daily (QD) halobetasol propionate 0.05% cream vs. halobetasol propionate 0.01% lotion suggesting similar efficacy at 2 weeks.21

Despite corticosteroid-sparing alternatives and combination therapies (discussed below) being commercially available, TCS remain widely used because of the low cost of some products as well as their versatility. They are available in a wide range of vehicles and potencies, ranging from I (ultra-high potency) to VII (low potency). Available vehicles include creams, lotions, foams, gels, ointments, shampoo, sprays, and solutions22 (Table 1). Typically, potent to ultra-potent TCS (class I-II) (e.g., clobetasol propionate) are used for thick plaques on the trunk/limbs or special sites, such as the scalp and palmoplantar regions; moderate potency TCS (class III-IV) (e.g., betamethasone valerate; triamcinolone acetonide) are suitable for thinner plaques on the trunk/limbs, whereas mild potency TCS (class VI-VII, e.g., desonide; hydrocortisone) are recommended for intertriginous areas, genitals and/or face.22 Milder potency preparations are also usually preferred to manage psoriasis in pediatric or pregnant patients.23,24 The choice of the vehicle is made by the treating physician together with the patient. While some vehicles are preferred based on the anatomic site being treated and desired potency, patient preference is of utmost importance since this enhances treatment compliance. An RCT of vehicle preference among various TCS preparations assessed adherence to treatment and improvement of HRQoL among patients with psoriasis between spray, cream, ointment, gel, lotion, foam, and solution.25 It was found that patient preference was highly variable, with less messy products favoured.25 There was no overwhelming agreement on the effect of TCS vehicles in terms of efficacy, hence treatment should be individualized.

Table 1. Topical Corticosteroid Classes of Potency

Class Selected Preparation
I (ultra-high potency)
  • Augmented betamethasone dipropionate 0.05% ointment, and lotion
  • Clobetasol propionate 0.05% cream, ointment and lotion, and solution (shampoo, spray aerosol)
  • Halobetasol propionate 0.05% cream and ointment
II (high potency)
  • Amcinonide 0.1% ointment
  • Augmented betamethasone dipropionate 0.05% cream
  • Betamethasone dipropionate 0.05% cream and ointment
  • Desoximetasone 0.25% ointment
  • Desoximetasone 0.05% gel
  • Fluocinomide 0.05% cream, ointment, and gel
  • Halobetasol propionate 0.01% lotion
  • Mometasone furoate 0.1% ointment
III (mid-potency)
  • Amcinonide 0.1% cream
  • Betamethasone valerate 0.1% ointment 
  • Desoximetasone 0.05% cream and ointment 
  • Fluocinonide 0.05% cream
  • Triamcinolone acetonide 0.5% cream
IV
  • Hydrocortisone valerate 0.2% ointment
  • Mometasone furoate 0.1% cream and lotion
  • Triamcinolone acetonide 0.1% cream and ointment
V
  • Betamethasone dipropionate 0.05% lotion
  • Betamethasone valerate 0.1% cream
  • Desonide 0.05% ointment
  • Hydrocortisone valerate 0.2% cream
  • Prednicarbate 0.1% cream and ointment
VI (low potency)
  • Betamethasone valerate 0.1% lotion
  • Desonide 0.05% cream
VII
  • Hydrocortisone 0.5% ointment
  • Hydrocortisone 1% cream, ointment, and lotion 
  • Hydrocortisone 2.5% cream

List of products obtained from Health Canada’s Drug Product Database on April 25th, 2023.

Adverse events (AEs) with TCS use are generally rare, but may occur with prolonged and/or inappropriate use. These include local AEs such as skin atrophy, telangiectasia, striae, poor wound healing and infections. When used on the face or acne-prone skin, acne exacerbation or de novo periorificial dermatitis/folliculitis may occur.26 Furthermore, even class VII TCS used on eyelids for prolonged periods can lead to cataracts and/or glaucoma.27 Systemic AEs related to hypothalamic-pituitary axis (HPA) suppression are exceedingly rare.28,29 Two systematic reviews/meta-analyses evaluated TCS safety in psoriasis. Literature identified was reassuring, with <5% risk of skin atrophy30 and <5% rate of HPA suppression when TCS were used long-term.31 TCS withdrawal reactions, such as Red Skin Syndrome or topical steroid addiction, have also been reported with discontinuation of prolonged, frequent use of moderate to high potency TCS.32 These severe reactions are rare and are more likely to occur with use on special areas, such as the face and the genitals. A recent review article concluded that TCS are generally safe and effective when used correctly for short periods of time or with short breaks in longer treatments.32 Beside AEs, additional TCS related limitations include potential tachyphylaxis and corticophobia. Whether tachyphylaxis truly exists is debated among experts, as diminished efficacy over time may be related to low adherence to treatment among patients, especially when long-term treatment is required.33 Corticophobia among patients and health care providers remains omnipresent and is a major barrier for treatment efficacy beyond inherent limitations associated with the drugs of this class.34

Vitamin D3 Analogues

The introduction of Vitamin D3 analogues ~30 years ago was met with much enthusiasm due to their steroid-sparing effect.35 Commercially available vitamin D3 analogues in Canada are calcipotriol and calcitriol ointments. Vitamin D3 analogues may be used as monotherapy, as an adjunct to TCS, or as fixed-dose combination therapy. They work by regulating gene transcription, modulating keratinocyte proliferation, and differentiation.36 The mechanism of action also involves the inhibition of T cell proliferation and downstream inflammatory mediators.36

There are several systematic reviews published assessing the efficacy of vitamin D3 analogues compared to vehicle or TCS.37-41 As monotherapy, 1 review reported treatment success (defined as >90% reduction in the PASI score) with vitamin D3 analogues ranging from 4-40% after 6-12 weeks of therapy.37 Another reported a decrease in the PASI ranging from 27.8-60.4% with calcipotriol monotherapy.38 Further, BID use of vitamin D3 analogues was found to be at least as effective as TCS and more effective than placebo at 8 weeks.38,39 A systematic review focused on efficacy of vitamin D3 analogues in pediatric psoriasis patients found 5 studies reporting improvement in PASI from baseline ranging from 17.3-94%, 1 study reporting improvement in Psoriasis Scalp Severity Index (PSSI) of 32.1%, and 1 study reporting 100% clearance of skin lesions.40

In the last 10 years, only 2 new double-blind, vehicle-controlled phase III RCTs evaluated the efficacy and safety of calcipotriol 0.005% foam BID for mild-to-severe psoriasis (defined as plaque psoriasis involving 2-20% BSA) compared to vehicle.42 Both studies demonstrated significant treatment success, defined as the Investigator’s Static Global Assessment (ISGA) scores of 0/1 at 8 weeks. The primary outcome was achieved in 15% vs. 7% of calcipotriol vs. vehicle patients in the first study and 28% vs. 6% in the second study.42

The use of vitamin D3 analogues in psoriasis has been shown to be safe and well-tolerated, with less AEs than TCS. AEs are generally comparable to the vehicle, with application site reactions occurring in less than 2% of subjects.42 Specifically, these include stinging, burning, and peeling of the skin.37,43 Calcitriol may cause less irritation in sensitive areas compared to treatment with calcipotriol.44 When used appropriately (maximum recommended dose of 100 g per week of calcipotriene or 200 g per week of calcitriol), the risk of hypercalcemia is very low.43 Hypercalcemia risk was studied in 3 studies, occurring at a rate <1%.37

Retinoids

Vitamin A and its naturally occurring and synthetic derivatives are referred to as retinoids.45 They were introduced as a treatment for cutaneous disorders in the 1960s and, with the development of safer synthetic retinoids, have become widely used.45 There are many topical retinoids used in dermatology, however, only tazarotene has been studied and indicated for psoriasis. While tazarotene lotion 0.045% is the only formulation commercially available in Canada, it is indicated for acne and used off-label for psoriasis. Tazarotene binds and modulates activity of retinoic acid receptors (RAR)-β and -γ, thereby decreasing inflammation and keratinocyte proliferation.46

There were 2 systematic reviews assessing the efficacy of topical retinoids in psoriasis. The first contained 4 studies comparing tazarotene 0.05% or 0.1% gel or cream to placebo, finding tazarotene to be more effective in improving symptoms in the short-term (6-12 weeks).39 However, the more recent systematic review comparing the same interventions found that symptom clearance as measured by Investigator’s Global Assessment (IGA) ranged from 5.5-6.2% with tazarotene 0.05% and 0.1% cream at 12 weeks, which was not better than placebo.47 In the last 10 years, there have been no new published RCTs assessing the efficacy of topical retinoid monotherapy in psoriasis. Most clinical trials have focused on combination therapy of tazarotene and TCS.

The most common AEs associated with use of tazarotene are cutaneous local irritations such as peeling, erythema, itching, and burning at the site of application.46 Cutaneous absorption of topical retinoids is limited, and there are no known systemic toxicities. However, as retinoids are teratogenic, women of childbearing age must use appropriate contraception.46

Calcineurin Inhibitors (TCI)

Topical calcineurin inhibitors (TCI) have been approved since the early 2000s for the treatment of mild-to-moderate atopic dermatitis. While not indicated for psoriasis, TCI are often used off-label for facial and intertriginous psoriasis to avoid TCS-related AEs.48 The available formulations are pimecrolimus 1% cream and tacrolimus 0.1% and 0.03% ointments. TCI bind to immunophilins, which lead to a decreased release of interleukin (IL)-2 and interferon (INF)-γ and thereby decreased T cell proliferation.49

Systematic reviews assessing the efficacy of TCI for psoriasis confirmed tacrolimus superiority to placebo, TCS and calcitriol in treating facial and intertriginous psoriasis with treatment duration of 8 weeks.50,51 However, pimecrolimus was inferior to standard psoriasis treatments.50,52 One systematic review looked at the synergistic effect of TCI and TCS, which found that there was no additional benefit by combining these agents as opposed to TCS alone.53

In the last 10 years, there have been 2 new RCTs published assessing the efficacy of TCI in psoriasis. The first studied the use of pimecrolimus 1% cream in the treatment of intertriginous psoriasis compared to placebo, finding that 71.4% in the treatment group reported an IGA of 0/1 at 8 weeks.54 The second assessed tacrolimus 0.1% ointment in the treatment of nail psoriasis on 1 hand, using the other hand as a control. At 12 weeks, there was statistically significant improvement in the treated hand as evaluated by the Nail Psoriasis Severity Index (NAPSI) score.55

AEs for topical TCI include skin irritation and discoloration to the site of application.56 In 2006, a black box warning was issued for a potential link with skin cancer and lymphoma.56 However, as a result of subsequent large-scale studies disproving this association,57 Health Canada lifted the black box warning in 2021.58 The systematic reviews and RCTs found similar rates of AEs between treatment and placebo groups,51,54 however patients should be counselled regarding transient burning sensation when prescribed tacrolimus ointment to improve treatment adherence.

Tar

Historically, coal tar was considered a classic anti-psoriatic therapy and was used as a first-line agent for more than 2,000 years to treat psoriasis and other skin diseases.59 Recent studies shed light into the mechanism of action of tar, suggesting modulation of epidermal differentiation and anti-inflammatory effects are likely achieved through activation of the aryl hydrocarbon receptor (AHR).59 The efficacy of coal tar or its distillate, liquor carbonis detergens (LCD), in treating psoriasis was seldom formally evaluated. The limited available data suggests inferior efficacy to other commercially available agents. Specifically, a Cochrane Review (last updated in 2013), identified tar (including LCD) as generally less effective than TCS and vitamin D3 analogue monotherapies.41 Safety has been another important concern. As the “crude” word suggests, coal tar contains >10,000 organic compounds, including carcinogenic chemicals, such as benzene.59 However, carcinogenic potential has not been proven.60 Over-the-counter tar-containing products are available in different formats including lotions, creams, ointments, and shampoos, however, its application can be messy by staining hair, skin, nails, and clothing with a very unpleasant odour.61 While it can be compounded with TCS and other active ingredients to enhance effectiveness and penetration, currently it is primarily used in shampoos for the treatment of scalp psoriasis.61

Combination Therapies

Combination therapies were developed to improve treatment efficacy as it provides 2 mechanisms of action simultaneously and may have additive or synergistic effects.62 Further, they may decrease AEs related to each ingredient alone and are therefore better tolerated than monotherapy.62 Specifically, vitamin D3 analogues and retinoids decrease the risk of skin atrophy, whereas TCS decreases the irritation associated with vitamin D3 analogues and retinoids. Additionally, most fixed-dose combination topical therapies are prescribed to be applied QD as opposed to BID, thereby potentially improving long-term compliance. Commonly prescribed fixed-dose combination topical therapies include TCS and salicylic acid, TCS and vitamin D3 analogues (commercially available since 2001 as ointment, 2012 as gel, and 2016 as aerosol) as well as TCS and retinoids (commercially available as lotion since 2020).

Topical Corticosteroids and Keratolytics

Keratolytic agents, such as salicylic acid and urea, can improve the efficacy of TCS, especially for thicker plaques, by enhancing penetration and improving skin barrier. They are commercially available in combination as salicylic acid 3.0% and betamethasone dipropionate 0.05% ointment and salicylic acid 2.0% and betamethasone dipropionate 0.05% lotion. Additional alternatives can be compounded. There were several RCTs assessing combination therapy of salicylic acid and TCS showing superiority to monotherapy of either salicylic acid or the TCS alone.53,63 However, 2 RCTs compared combination therapy of TCS and salicylic acid to calcipotriol monotherapy, with no clinical difference.64 HRQoL was however improved with the combination therapy and was preferred by patients.63 Only 1 RCT assessed urea in combination with TCS, which found a greater percentage of patients with an improved clinical score compared to monotherapy (47% vs. 33%).63 Similarly, recent data showed that even simple moisturizers containing lipid-ceramides improve the efficacy of TCS.65,66 In the last 10 years, there have been no newly published RCTs assessing the efficacy of topical salicylic acid and TCS combination therapy in psoriasis. Although rare, there is a risk of salicylic acid toxicity with topical application.67

Calcipotriol and Betamethasone Dipropionate Fixed-Dose Combination

Calcipotriol 50 μg/g and betamethasone dipropionate 0.5 mg/g (Cal/BD), available in ointment, gel, and foam formulations in Canada, allows for both anti-inflammatory and anti-proliferative effects. A large Cochrane systematic review published in 2013 assessed the efficacy of combination therapies in psoriasis. Cal/BD was superior to placebo41,68 and monotherapy (Cal or BD alone) in all but 1 RCT as early as after 2-8 weeks of treatment.41

In the last 10 years, there have been many new RCTs assessing the efficacy of Cal/BD for psoriasis focusing on the newer foam formulation, which when used QD for 4-12 weeks demonstrated a significant decrease in PASI from baseline of ~70%, superior to vehicle or either monotherapy.69-72 Further, approximately half of participants achieved an IGA of 0/1.73 Two studies compared Cal/BD to betamethasone valerate 0.1% dressing, showing in the first trial no significant efficacy difference at 4 weeks with Cal/BD ointment74 and the second trial demonstrated superiority of the Cal/BD foam (at 4 weeks).75 Several additional RCTs re-iterated the superiority of Cal/BD therapy vs. vitamin D3 analogue monotherapy.76,70,77-80

Several RCTs focused on Cal/BD vehicle.71,72,81 RCTs comparing different vehicles have shown better efficacy and superior HRQoL improvement with the use of Cal/BD foam compared to gel or ointment formulations71,72,81 and cream compared to suspension.82 However, RCTs assessing vehicle preference as determined by patients did not find any significant preferences when comparing gel vs. foam, gel vs. ointment, and ointment vs. topical suspension, determining that individual patient preference should dictate treatment.83-85 One real-world study found that patients using gel reported greater satisfaction compared to ointment due to ease of use.86

One RCT focused on psoriasis relapse prevention following clinical clearance, defined as PGA score 0 or 1 (clear or almost clear).87 In this study, both treatment arms received Cal/BD QD for 4 weeks initially to achieve skin clearance and were subsequently randomized into Cal/BD or vehicle biweekly as maintenance treatment. Patients that applied Cal/BD proactively experienced 3.1 relapses per year vs. 4.8 relapses (defined as PGA score 2 or higher) seen in the vehicle group. Median time to first relapse was also longer in the proactive management group (56 vs. 30 days) suggesting that proactive approach may be an interesting alternative to reactive approach for interested patients and could potentially be cost-effective.87 As expected, both active treatment and proactive maintenance with Cal/BD were well-tolerated and no cases of skin atrophy were reported in either group.87

Tazarotene and Halobetasol Fixed-Dose Combination

The only combination treatment of retinoid with TCS commercially available in Canada is halobetasol 0.01%/tazarotene 0.045% (HP/TAZ) lotion. A systematic review published in 2012 included 7 studies assessing the combination of retinoids (in general) with TCS, supporting superiority of combination as opposed to retinoid monotherapy at 4 weeks.88 A recently published systematic review of 5 RCTs demonstrated treatment success, defined as at least 2-grade improvement from baseline in the IGA score and IGA score of 0 or 1 (clear or almost clear), of 32.8-52.5% for HP/TAZ compared to 33.3-34% for HP alone and 18.6% for TAZ alone with treatment duration of 2-8 weeks.89

There have been several new RCTs published in the last 10 years assessing efficacy and safety of retinoids and TCS combination therapy. A combination tazarotene 0.05%/betamethasone diproprionate 0.05% (TAZ/BD) applied QD was superior to either agent used as monotherapy in 2 studies.90,91 Treatment success of QD topical HP/TAZ lotion measured by the proportion of patients achieving IGA 0/1 ranged from 31.3-57.8% with treatment durations of 8-12 weeks,92-99 which was significantly more effective than vehicle or either ingredient alone. The most frequent AEs reported were dermatitis, pruritus, pain, and irritation,92,93,98 occurring in 6-20.8% of study participants.91,97 A single RCT analyed the sensitization and irritation potential of HP/TAZ lotion with treatment duration of 4-6 weeks, finding that the topical did not induce contact sensitization and caused only minimal skin irritation, but significantly less than tazarotene alone.100

Topical Therapies for Psoriasis – The Pipeline

As reviewed above, our current toolbox of topical therapy options is limited to TCS and a handful of other agents, such as vitamin D3 analogues, retinoids, tar or their combination. While the marketing of steroid-sparing monotherapies and fixed-dose combinations with TCS represents a major step forward in the management of psoriasis, these treatment options possess limitations in terms of efficacy, AEs, cost, patient satisfaction, and real-world adherence. Hence, there remains an unmet need for new topical therapies.101

There is an exciting topical therapy pipeline in psoriasis (Table 2), roflumilast and tapirnarof will be discussed in this section as phase III RCT data was recently published. Roflumilast is a phosphodiesterase-4 (PDE-4) inhibitor that has been developed into 0.3% cream and foam formulations. Crisaborole, a topical PDE-4 inhibitor, was approved in 2016 for atopic dermatitis in adults and children.102 Its use has been investigated for psoriasis in phase II RCTs, however, despite demonstrating efficacy and safety, results were not published. Rather, focus has shifted to roflumilast, a more potent PDE-4 inhibitor by 25-300X based on in vitro studies.102 PDE-4 inhibition suppresses the breakdown of cyclic adenosine monophosphate (cAMP), decreasing the presence of proinflammatory cytokines involved in the pathogenesis of psoriasis, similar to apremilast used systemically or topical crisaborole.103 Phase I and II RCT data have demonstrated that roflumilast cream QD was superior to the vehicle when used for 2-8 weeks.104-106 Phase III RCT data regarding roflumilast 0.3% cream efficacy and safety has been recently published.107 DERMIS-1 and DERMIS-2 were parallel double-blind RCTs including 439 and 442 patients, respectively. Patients aged ≥2 years with psoriasis affecting 2-20% BSA were recruited and randomized 2:1 into either roflumilast 0.3% cream or vehicle applied QD for 8 weeks. The primary outcome was IGA 0/1 response plus ≥2 grade improvement from baseline, which was achieved in 37.5-42.4% of roflumilast-treated patients vs. 6.1-6.9% vehicle-treated patients. Improvement of PASI ≥75% from baseline (PASI75) was achieved in 39.0-41.6% vs. 5.3-7.6% of roflumilast-treated vs. vehicle-treated patients, respectively. It was also shown to be effective for the treatment of intertriginous psoriasis (68.1-71.2% vs. 13.8-18.5%). The incidence of AEs was comparable to the vehicle, with the most commonly reported events being diarrhea and headache in the roflumilast group. Further, AE profiles were similar in individuals aged 12–17 years relative to adults.107 Currently, roflumilast is approved by the US Food and Drug Administration (FDA) and Health Canada.

Table 2. Topical antipsoriatic agents undergoing clinical trials

Product Class Phase Clinical Trial Number and Status*
BOS-475 0.5%, 1%, or 2% cream Targets BD2 domain of bromodomain containing protein I

NCT03960450,NCT04221906124,125 – Studies completed

SAN021 serum containing 10% East Indian sandalwood oil PDE-4 inhibitor II

NCT03000608126 – Study completed

Crisaborole ointment 0.3%, 0.5%, 1%, 2%, or 5% PDE-4 inhibitor I

NCT01258088, NCT00763204, NCT00762658127-129 – Studies completed

Crisaborole ointment 0.5%, 2%, or 5% PDE-4 inhibitor II

NCT01300052, NCT00759161, NCT00755196, NCT01029405130-133  – Studies completed

LAS41004 ointment (bexarotene/betamethasone dipropionate) Fixed combination retinoid and topical corticosteroid II

NCT02180464, NCT01360944, NCT01283698, NCT01119339, NCT02111499, NCT01462643134-139 – Studies completed

PH-10 0.002%, 0.005%, or 0.01% rose bengal aqueous hydrogel Rose bengal disodium II

NCT01247818, NCT02322086, NCT00941278140-142 – Studies completed

SNA-120 (CT 327/pegcantratinib) 0.5% ointment

TrkA receptor antagonist II

NCT03448081, NCT03322137143,144 – Studies completed

Roflumilast 0.3% foam for scalp and body psoriasis PDE-4 inhibitor II

NCT04128007145 – Study complete

Roflumilast 0.3% cream PDE-4 inhibitor II

NCT03764475, NCT04746911, NCT04655313146-148 – Studies completed

Roflumilast 0.3% foam for scalp and body psoriasis

PDE-4 inhibitor III

NCT05028582149 – Study completed

Roflumilast 0.3% cream PDE-4 inhibitor III

NCT04286607, NCT05763083150,151 – Actively recruiting

M518101 (pefcalcitol) ointment

Vitamin D3 analogue III

NCT01908595, NCT01989429, NCT01878461, NCT01873677152–155 – Study completed

MC2-01 cream (calcipotriene 0.05%/betamethasone dipropionate 0.064%) Fixed combination vitamin D3 analogue and corticosteroid III

NCT03462927156 – Study completed

Tapinarof (DMVT-505) 1% cream Aryl hydrocarbon receptor agonist III

NCT04053387157 – Study completed

NCT05172726158 – Actively recruiting

NCT05680740, NCT05789576159,160 – Active, not yet recruiting

*Last update per ClinicalTrials.gov as of April 25, 2023

Tapinarof is an AHR-modulating agent that acts as an anti-inflammatory compound. It has a similar mechanism of action to tar, which also activates AHRs, however it does not contain carcinogenic chemical compounds.108 Tapinarof is able to regulate innate and adaptive immune responses, affecting Th17 and regulatory T cells. It also has an important role in the development and maintenance of the skin barrier and upregulating barrier genes, such as filaggrin. Lastly, tapinarof inhibits the migration of T cells, decreasing the presence of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, INF-γ, IL-2, IL-13 and IL-17A.103 Phase III RCT data has been recently published. In 2 parallel double-blind RCTs including >600 patients each, adults with mild-to-severe psoriasis (PGA 2-4, BSA 3-20%) were recruited and randomized 2:1 into either tapiranof 1% cream or vehicle applied QD for 12 weeks. The primary endpoint was IGA 0/1 and 2-point reduction from baseline at 12 weeks, which was achieved in 35.4-40.2% of tapinarof-treated patients vs. 6.0-6.3% of vehicle-treated patients.109 While it was generally well-tolerated, increased rates of pruritus, contact dermatitis and folliculitis were seen in the active treatment group. A second RCT found that significantly more participants achieved a 75% reduction in the PASI score from baseline (PASI75) with tapinarof (50.4%) compared to calcipotriol (38.5%) and placebo (13.9%) when used QD for 12 weeks.110 Tapinarof has been recently approved by the FDA.

Treatment Guidelines for Topical Antipsoriatic Agents

Treatment guidelines for severe psoriasis and psoriatic arthritis are beyond the scope of this manuscript. This section will focus on reviewing guidelines specific to the treatment of mild-to-moderate psoriasis or treatment focused on topical agents.

Current guidelines for the treatment of mild-to-moderate psoriasis recommend topical therapies which include monotherapy with TCS, vitamin D3 analogues, TCI, retinoids, anthralin, and tar as well as combination therapies as first-line options. In Canada specifically, treatment guidelines were initially published in 2011. At this point, Grade A recommendation for first-line topical therapies included TCS or vitamin D3 analogues (i.e. calcipotriol) monotherapy or Cal/BD fixed-dose combination therapy. The treatment guidelines noted that additional topical therapy options were superior to placebo (e.g., retinoids alone or in combination with TCS, 15% LCD) and may be used on a case-by-case basis.10,111 An update of these treatment guidelines was published in 2016 adding topical calcitriol as an additional first-line topical therapy option for mild psoriasis.10,111

The American Academy of Dermatology (AAD) and National Psoriasis Foundation (NPF) have put forth the most recent guidelines in North America in 2020 focusing on topical therapies.14 The AAD-NPF guidelines do not mention specific recommendations for first-line topical therapy options, but rather provide guidance for use within each class. For TCS, Grade A recommendations include using class I to V agents for up to 4 weeks for body psoriasis (excluding intertriginous areas) and class I to VII agents for scalp psoriasis. The use of TCS for prolonged periods (>12 weeks) may be done under the supervision of a physician (Grade C). However, gradual reduction in frequency of TCS is suggested upon clinical improvement, but without defined tapering protocol. Following clinical improvement, maintenance of response can be achieved by using a steroid-sparing agent (e.g., vitamin D3 analogues or TCI) or by using TCS intermittently (e.g., biweekly, this is also known as proactive approach). Additional recommendations made in regards to TCS use were as follows: the use of emollient was suggested to reduce itching and desquamation and to prevent relapse after TCS discontinuation (Grade B). As well, topical salicylic acid alone or in combination with TCS was recommended as an alternative to TCS monotherapy to achieve clear skin (8-16 weeks of treatment, Grade B).

AAD/NPF guidelines recommended vitamin D3 analogue monotherapy and/or in combination with TCS (e.g., Cal/BD fixed-dose combinations) to induce clearance of scalp psoriasis (4-12 weeks treatment, Grade A), facial psoriasis (up to 8 weeks treatment, Grade B, caution to favour class VI-VII TCS agents) or body psoriasis (up to 52 weeks treatment, Grade A). Topical retinoids (e.g., tazarotene) were recommended either as monotherapy, fixed-dose combination (e.g., HP/Taz) or in combination with narrowband ultraviolet light phototherapy (NB-UVB) (Grade B) for plaque psoriasis and nail psoriasis. However, HP/Taz was preferred (Grade A) to induce clear skin (8-16 weeks treatment) due to better efficacy and tolerability.

The off-label use of TCI (e.g., tacrolimus and pimecrolimus) was recommended by AAD/NPF guidelines for facial and inverse psoriasis to achieve clinical improvement (Grade B recommendation) and to maintain response (Grade C recommendation). They also suggested a combination of tacrolimus/6% salicylic acid for body psoriasis (Grade B recommendation).

Grade B recommendation was also stated for short contact anthralin use (≤2 hours per day, up to 8-12 weeks treatment) and Goeckerman therapy (coal tar and NB-UVB) for mild-to-moderate plaque psoriasis.14 Coal tar preparations received Grade A recommendation as well.

Real-world Limitations with Topical Treatments and Strategies to Improve Compliance

As highlighted above, all current topical therapies come with limitations. Patient compliance is certainly among the most important barriers to success. Adherence rates with current topical therapies are low, estimated to range from 50-70% in general.101 The compliance rates for TCS are even more variable and in some instances are thought to be as low 8%, due to prevalent corticophobia among dermatology patients.101,112 Adherence is an important concept that must be evaluated in patients as it is directly associated with better clinical outcomes. A recent RCT demonstrated that a decrease in adherence rate of 10% was associated with a 1-point increase in disease severity.113

Various interventions were studied to improve compliance. Three RCTs integrated reminders in the forms of BID telephone calls, text messages, or smartphone application to remind and motivate patients to use their topical therapy.20,114,115 In all studies, adherence improved and almost doubled compared to non-interventional arms (65% vs. 38% adherence).115 This translated into significantly better clinical outcomes, such as reduction in PGA.20,115 Another RCT developed a web-based application to educate patients with videos, graphics, and text.116 While knowledge was improved, this did not translate to increased treatment adherence.116 Four RCTs approached adherence by offering more clinical support, such as teaching from nursing staff or internet-based reporting.117-120 Compared to standard of care, these clinical trials demonstrated that additional support resulted in greater clinical outcomes as early as 4 weeks, which were sustained at 3 months.117-120

Vehicle selection is an important component of efficacy and adherence. Good vehicles can accelerate barrier restoration and enhance efficacy of active agents by promoting penetration and sustained drug release.121 As discussed above, RCTs assessing patient satisfaction have found that treatment preferences are heterogeneous and may even change over time.83,122 Factors that may influence preferences included age, sex, comorbidities, disease duration, and prior treatments.122 Therefore, a vehicle should be selected to maximize efficacy and meet the diverse needs of the patient while considering bodily location of psoriasis, probability of improvement, and delivery method. An additional very important attribute for a topical therapy to improve patient adherence is convenience. While it may be patient-specific, an agent that does not need to be applied often (QD or less often), is universal (e.g., same product that can be applied anywhere on the skin), is cosmetically acceptable (texture, colour, and odour) and is affordable will likely promote higher patient adherence and thereby achieve better clinical success rates.

As discussed in the guideline review section above, the first aim of psoriasis treatment is to achieve clear/almost clear skin with a topical agent of choice (combined physician/patient decision for agent selection). Prior to fixed-dose combination topical therapies, in order to increase efficacy while mitigating AEs, different strategies were used. These included rotational treatment where patients alternated between 2 agents, usually a TCS and a corticosteroid-sparing molecule;123 or a sequential treatment approach where a superpotent agent (usually TCS class I-II) was used initially with subsequent step down to either a milder TCS, steroid-sparing molecule or a rotational treatment. However, nowadays fixed-dose combination topical therapies are more popular for their additive efficacy, simplicity, and convenience.123 Once acceptable control is achieved, discussion of relapse prevention is important.

Because psoriasis is chronic and likely to recur upon discontinuation of the topical therapy, it is important to educate the patient about the chronicity of the disease and its treatment at the initial and subsequent visits. Two approaches following initial improvement of psoriasis are commonly used in clinical practice to maintain response over longer-term: the proactive and reactive approaches. Combined physician-patient decision-making may opt for either a proactive approach which consists of using the same agent to achieve clear skin (or another topical) intermittently (e.g., biweekly) to psoriasis-prone areas in order to prevent recurrence, or a reactive approach where all treatments are discontinued upon clinical resolution and restarted promptly with first signs of disease recurrence.

Conclusion

The vast majority of our psoriasis patients have a mild-to-moderate disease requiring topical therapies life-long. Consequently, the availability of safe, effective, and convenient products is essential to achieve and maintain clear/almost clear skin and promote long term treatment adherence. In this review, we provided clinicians an up to date safety and efficacy data of commercially available topical products as well as imminent pipeline topicals. North American guidelines for topical treatment of mild-to-moderate psoriasis are summarized as well as clinical tips are provided.

References



  1. Papp KA, Gniadecki R, Beecker J, et al. Psoriasis Prevalence and Severity by Expert Elicitation. Dermatol Ther. 2021; 11: 1053–1064.

  2. Salman A, Yucelten AD, Sarac E, et al. Impact of psoriasis in the quality of life of children, adolescents and their families: a cross-sectional study. An Bras Dermatol. 2018; 93: 819–823.

  3. Sarac G, Koca TT, Baglan T. A brief summary of clinical types of psoriasis. North Clin Istanb. 2016; 3: 79–82.

  4. Pearl RL, Wan MT, Takeshita J, et al. Stigmatizing attitudes toward persons with psoriasis among laypersons and medical students. J Am Acad Dermatol. 2019; 80: 1556–1563.

  5. Alpsoy E, Polat M, Yavuz IH, et al. Internalized Stigma in Pediatric Psoriasis: A Comparative Multicenter Study. Ann Dermatol. 2020; 32: 181–188.

  6. Mehrmal S, Uppal P, Nedley N, et al. The global, regional, and national burden of psoriasis in 195 countries and territories, 1990 to 2017: A systematic analysis from the Global Burden of Disease Study 2017. J Am Acad Dermatol. 2021; 84: 46–52.

  7. Papp KA, Lebwohl MG. Onset of Action of Biologics in Patients With Moderate-to-Severe Psoriasis. J Drugs Dermatol. 2018; 17: 247–250.

  8. Armstrong AW, Mehta MD, Schupp CW, et al. Psoriasis Prevalence in Adults in the United States. JAMA Dermatol. 2021; 157: 940–946.

  9. Menter A, Gottlieb A, Feldman SR, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol. 2008; 58: 826–850.

  10. Canadian Psoriasis Guidelines Addendum Committee. 2016 addendum to the Canadian guidelines for the management of plaque psoriasis 2009. J Cutan Med Surg. 2016; 20: 375–431.

  11. Gustafson CJ, Watkins C, Hix E, et al. Combination therapy in psoriasis: an evidence-based review. Am J Clin Dermatol. 2013; 14: 9–25.

  12. Ko S-H, Chi C-C, Yeh M-L, et al. Lifestyle changes for treating psoriasis. Cochrane Database Syst Rev. 2019; 7: CD011972.

  13. Armstrong AW, Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA. 2020; 323: 1945–1960.

  14. Elmets CA, Korman NJ, Prater EF, et al. Joint AAD–NPF Guidelines of care for the management and treatment of psoriasis with topical therapy and alternative medicine modalities for psoriasis severity measures. Journal of the American Academy of Dermatology. 2021; 84: 432–470.

  15. Castela E, Archier E, Devaux S, et al. Topical corticosteroids in plaque psoriasis: a systematic review of efficacy and treatment modalities. Journal of the European Academy of Dermatology and Venereology. 2012; 26: 36–46.

  16. Gabros S, Nessel TA, Zito PM. Topical corticosteroids, https://europepmc.org/books/nbk532940 (accessed 11 March 2023).

  17. Saleem MD, Negus D, Feldman SR. Topical 0.25% desoximetasone spray efficacy for moderate to severe plaque psoriasis: a randomized clinical trial. J Dermatolog Treat. 2018; 29: 32–35.

  18. Hogue L, Cardwell LA, Roach C, et al. Psoriasis and Atopic Dermatitis ‘Resistant’ to Topical Treatment Responds Rapidly to Topical Desoximetasone Spray. J Cutan Med Surg. 2019; 23: 157–163.

  19. Okwundu N, Cardwell L, Cline A, et al. Is topical treatment effective for psoriasis in patients who failed topical treatment? J Dermatolog Treat. 2021; 32: 41–44.

  20. Okwundu N, Cardwell LA, Cline AE, et al. Adherence to topical treatment can improve treatment-resistant moderate psoriasis. Cutis. 2020; 105: 89–91;E2;E3.

  21. Kerdel FA, Draelos ZD, Tyring SK, et al. A phase 2, multicenter, double-blind, randomized, vehicle-controlled clinical study to compare the safety and efficacy of a halobetasol propionate 0.01% lotion and halobetasol propionate 0.05% cream in the treatment of plaque psoriasis. J Dermatolog Treat. 2019; 30: 333–339.

  22. Brazzini B, Pimpinelli N. New and established topical corticosteroids in dermatology: clinical pharmacology and therapeutic use. Am J Clin Dermatol. 2002; 3: 47–58.

  23. Shah KN. Diagnosis and treatment of pediatric psoriasis: current and future. Am J Clin Dermatol. 2013; 14: 195–213.

  24. Murase JE, Heller MM, Butler DC. Safety of dermatologic medications in pregnancy and lactation. Journal of the American Academy of Dermatology. 2014; 70: 401.e1–401.e14.

  25. Felix K, Unrue E, Inyang M, et al. Patients preferences for different corticosteroid vehicles are highly variable. J Dermatolog Treat. 2020; 31: 147–151.

  26. Tolaymat L, Hall MR. Perioral Dermatitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022.

  27. Daniel BS, Orchard D. Ocular side–effects of topical corticosteroids: what a dermatologist needs to know. Australas J Dermatol. 2015; 56: 164–169.

  28. Hengge UR, Ruzicka T, Schwartz RA, et al. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006; 54: 1–15; quiz 16–8.

  29. Abraham A, Roga G. Topical steroid-damaged skin. Indian J Dermatol. 2014; 59: 456–459.

  30. Castela E, Archier E, Devaux S, et al. Topical corticosteroids in plaque psoriasis: a systematic review of risk of adrenal axis suppression and skin atrophy. J Eur Acad Dermatol Venereol. 2012; 26 Suppl 3: 47–51.

  31. Broersen LHA, Pereira AM, Jørgensen JOL, et al. Adrenal Insufficiency in Corticosteroids Use: Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2015; 100: 2171–2180.

  32. Health Canada. Health Product InfoWatch – July 2022, https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/health-product-infowatch/july-2022.html (2022, accessed 7 May 2023).

  33. Feldman SR. Tachyphylaxis to topical corticosteroids: the more you use them, the less they work? Clin Dermatol. 2006; 24: 229–30; discussion 230.

  34. Svendsen MT, Andersen KE, Andersen F, et al. Psoriasis patients’ experiences concerning medical adherence to treatment with topical corticosteroids. Psoriasis (Auckl). 2016; 6: 113–119.

  35. Lebwohl MG. The evolution of vitamin D analogues for the treatment of psoriasis. Arch Dermatol. 1995; 131: 1323.

  36. Lung BE, Mowery ML, Komatsu DEE. Calcitriol, https://europepmc.org/books/nbk526025 (accessed 4 March 2023).

  37. Devaux S, Castela A, Archier E, et al. Topical vitamin D analogues alone or in association with topical steroids for psoriasis: a systematic review. J Eur Acad Dermatol Venereol. 2012; 26 Suppl 3: 52–60.

  38. Ashcroft DM, Po AL, Williams HC, et al. Systematic review of comparative efficacy and tolerability of calcipotriol in treating chronic plaque psoriasis. BMJ. 2000; 320: 963–967.

  39. Naldi L, Rzany B. Psoriasis (chronic plaque). BMJ Clin Evid; 2009, https://www.ncbi.nlm.nih.gov/pubmed/19445765 (2009).

  40. Kravvas G, Gholam K. Use of topical therapies for pediatric psoriasis: A systematic review. Pediatr Dermatol. 2018; 35: 296–302.

  41. Mason AR, Mason J, Cork M, et al. Topical treatments for chronic plaque psoriasis. Cochrane Database of Systematic Reviews. Epub ahead of print 2013. DOI: 10.1002/14651858.cd005028.pub3.

  42. Feldman SR, Matheson R, Bruce S, et al. Efficacy and safety of calcipotriene 0.005% foam for the treatment of plaque-type psoriasis: results of two multicenter, randomized, double-blind, vehicle-controlled, phase III clinical trials. Am J Clin Dermatol. 2012; 13: 261–271.

  43. Kircik L. Efficacy and safety of topical calcitriol 3 microg/g ointment, a new topical therapy for chronic plaque psoriasis. J Drugs Dermatol. 2009; 8: s9–16.

  44. Ortonne JP, Humbert P, Nicolas JF, et al. Intra-individual comparison of the cutaneous safety and efficacy of calcitriol 3 microg g(-1) ointment and calcipotriol 50 microg g(-1) ointment on chronic plaque psoriasis localized in facial, hairline, retroauricular or flexural areas. Br J Dermatol. 2003; 148: 326–333.

  45. Beckenbach L, Baron JM, Merk HF, et al. Retinoid treatment of skin diseases. Eur J Dermatol. 2015; 25: 384–391.

  46. Heath MS, Sahni DR, Curry ZA, et al. Pharmacokinetics of tazarotene and acitretin in psoriasis. Expert Opin Drug Metab Toxicol. 2018; 14: 919–927.

  47. Samarasekera EJ, Sawyer L, Wonderling D, et al. Topical therapies for the treatment of plaque psoriasis: systematic review and network meta-analyses. Br J Dermatol. 2013; 168: 954–967.

  48. Guenther L, Lynde C, Poulin Y. Off-Label Use of Topical Calcineurin Inhibitors in Dermatologic Disorders. J Cutan Med Surg. 2019; 23: 27S–34S.

  49. Safarini OA, Patel J. Calcineurin inhibitors, https://europepmc.org/article/nbk/nbk558995 (2020).

  50. Dattola A, Silvestri M, Bennardo L, et al. Update of calcineurin inhibitors to treat inverse psoriasis: A systematic review. Dermatol Ther. 2018; 31: e12728.

  51. Beck KM, Yang EJ, Sanchez IM, et al. Treatment of Genital Psoriasis: A Systematic Review. Dermatol Ther. 2018; 8: 509–525.

  52. Wang C, Lin A. Efficacy of topical calcineurin inhibitors in psoriasis. J Cutan Med Surg. 2014; 18: 8–14.

  53. Hendriks AGM, Keijsers RRMC, de Jong EMGJ, et al. Combinations of classical time-honoured topicals in plaque psoriasis: a systematic review. J Eur Acad Dermatol Venereol. 2013; 27: 399–410.

  54. Gribetz C, Ling M, Lebwohl M, et al. Pimecrolimus cream 1% in the treatment of intertriginous psoriasis: a double-blind, randomized study. J Am Acad Dermatol. 2004; 51: 731–738.

  55. De Simone C, Maiorino A, Tassone F, et al. Tacrolimus 0.1% ointment in nail psoriasis: a randomized controlled open-label study. J Eur Acad Dermatol Venereol. 2013; 27: 1003–1006.

  56. Carr WW. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr Drugs. 2013; 15: 303–310.

  57. Arana A, Pottegård A, Kuiper JG, et al. Long-Term Risk of Skin Cancer and Lymphoma in Users of Topical Tacrolimus and Pimecrolimus: Final Results from the Extension of the Cohort Study Protopic Joint European Longitudinal Lymphoma and Skin Cancer Evaluation (JOELLE). Clin Epidemiol. 2021; 13: 1141–1153.

  58. Canada LP. The Product Monograph for Protopic® has been updated. PR Newswire, https://www.newswire.ca/news-releases/the-product-monograph-for-protopic-r-has-been-updated-830094216.html (2021, accessed 30 March 2023).

  59. Heymann WR. ‘Tar smarts’ may have a new meaning for atopic dermatitis and psoriasis. Journal of the American Academy of Dermatology. 2019; 80: 56–57.

  60. Roelofzen JHJ, Aben KKH, Oldenhof UTH, et al. No Increased Risk of Cancer after Coal Tar Treatment in Patients with Psoriasis or Eczema. J Invest Dermatol. 2010; 130: 953–961.

  61. Ávalos-Viveros M, Esquivel-García R, García-Pérez M, et al. Updated view of tars for psoriasis: what have we learned over the last decade? Int J Dermatol. 2023; 62: 290–301.

  62. Yan R, Jiang S, Wu Y, et al. Topical calcipotriol/betamethasone dipropionate for psoriasis vulgaris: A systematic review. Indian J Dermatol Venereol Leprol. 2016; 82: 135–144.

  63. Jacobi A, Mayer A, Augustin M. Keratolytics and emollients and their role in the therapy of psoriasis: a systematic review. Dermatol Ther. 2015; 5: 1–18.

  64. Mason J, Mason AR, Cork MJ. Topical preparations for the treatment of psoriasis: a systematic review. Br J Dermatol. 2002; 146: 351–364.

  65. Li X, Yang Q, Zheng J, et al. Efficacy and safety of a topical moisturizer containing linoleic acid and ceramide for mild-to-moderate psoriasis vulgaris: A multicenter randomized controlled trial. Dermatol Ther. 2020; 33: e14263.

  66. Liu M, Li X, Chen X-Y, et al. Topical application of a linoleic acid-ceramide containing moisturizer exhibit therapeutic and preventive benefits for psoriasis vulgaris: a randomized controlled trial. Dermatol Ther. 2015; 28: 373–382.

  67. Madan RK, Levitt J. A review of toxicity from topical salicylic acid preparations. J Am Acad Dermatol. 2014; 70: 788–792.

  68. Zhao Y, Asahina A, Asawanonda P, et al. Systematic review and practical guidance on the use of topical calcipotriol and topical calcipotriol with betamethasone dipropionate as long-term therapy for mild-to-moderate plaque psoriasis. J Dermatol. 2021; 48: 940–960.

  69. Leonardi C, Bagel J, Yamauchi P, et al. Efficacy and Safety of Calcipotriene Plus Betamethasone Dipropionate Aerosol Foam in Patients With Psoriasis Vulgaris–a Randomized Phase III Study (PSO-FAST). J Drugs Dermatol. 2015; 14: 1468–1477.

  70. Lebwohl M, Tyring S, Bukhalo M, et al. Fixed Combination Aerosol Foam Calcipotriene 0.005% (Cal) Plus Betamethasone Dipropionate 0.064% (BD) is More Efficacious than Cal or BD Aerosol Foam Alone for Psoriasis Vulgaris: A Randomized, Double-blind, Multicenter, Three-arm, Phase 2 Study. J Clin Aesthet Dermatol. 2016; 9: 34–41.

  71. Koo J, Tyring S, Werschler WP, et al. Superior efficacy of calcipotriene and betamethasone dipropionate aerosol foam versus ointment in patients with psoriasis vulgaris – A randomized phase II study. Journal of Dermatological Treatment. 2016; 27: 120–127.

  72. Paul C, Stein Gold L, Cambazard F, et al. Calcipotriol plus betamethasone dipropionate aerosol foam provides superior efficacy vs. gel in patients with psoriasis vulgaris: randomized, controlled PSO-ABLE study. Journal of the European Academy of Dermatology and Venereology. 2017; 31: 119–126.

  73. Stein Gold L, Paul C, Romiti R. Efficacy and safety of fixed-dose combination calcipotriol/betamethasone dipropionate foam for the treatment of psoriasis. J Eur Acad Dermatol Venereol. 2021; 35 Suppl 1: 10–19.

  74. Ortonne J-P, Esposito M, Chimenti S, et al. Betamethasone valerate dressing is non-inferior to calcipotriol-betamethasone dipropionate ointment in the treatment of patients with mild-to-moderate chronic plaque psoriasis: results of a randomized assessor-blinded multicentre trial. J Eur Acad Dermatol Venereol. 2014; 28: 1226–1234.

  75. Queille-Roussel C, Rosen M, Clonier F, et al. Efficacy and Safety of Calcipotriol Plus Betamethasone Dipropionate Aerosol Foam Compared with Betamethasone 17-Valerate-Medicated Plaster for the Treatment of Psoriasis. Clin Drug Investig. 2017; 37: 355–361.

  76. Langley RGB, Gupta A, Papp K, et al. Calcipotriol plus betamethasone dipropionate gel compared with tacalcitol ointment and the gel vehicle alone in patients with psoriasis vulgaris: a randomized, controlled clinical trial. Dermatology. 2011; 222: 148–156.

  77. Queille-Roussel C, Hoffmann V, Ganslandt C, et al. Comparison of the antipsoriatic effect and tolerability of calcipotriol-containing products in the treatment of psoriasis vulgaris using a modified psoriasis plaque test. Clin Drug Investig. 2012; 32: 613–619.

  78. Fulmali S, Thurka S, Sultana R, et al. A comparative study on efficacy of treatment regimens with Calcipotriol/Betamethasone Dipropionate Vs Calcipotriol ointments in Plaque type Psoriasis patients at Tertiary Care Hospital, Telangana. Asian Journal of Pharmacy and Pharmacology. 2022; 8: 58–65.

  79. Liu L, Zhang C, Wang J, et al. Comparison of safety and efficacy between calcipotriol plus betamethasone dipropionate gel and calcipotriol scalp solution as long-term treatment for scalp psoriasis in Chinese patients: a national, multicentre, prospective, randomized, active-controlled phase 4 trial. Eur J Dermatol. 2020; 30: 580–590.

  80. Menter A, Gold LS, Bukhalo M, et al. Calcipotriene plus betamethasone dipropionate topical suspension for the treatment of mild to moderate psoriasis vulgaris on the body: a randomized, double-blind, vehicle-controlled trial. J Drugs Dermatol. 2013; 12: 92–98.

  81. Queille-Roussel C, Olesen M, Villumsen J, et al. Efficacy of an innovative aerosol foam formulation of fixed combination calcipotriol plus betamethasone dipropionate in patients with psoriasis vulgaris. Clin Drug Investig. 2015; 35: 239–245.

  82. Gold LS, Green L, Dhawan S, et al. A Phase 3, Randomized Trial Demonstrating the Improved Efficacy and Patient Acceptability of Fixed Dose Calcipotriene and Betamethasone Dipropionate Cream. Journal of Drugs in Dermatology. 2021; 20: 420–425.

  83. Hong C-H, Papp KA, Lophaven KW, et al. Patients with psoriasis have different preferences for topical therapy, highlighting the importance of individualized treatment approaches: randomized phase IIIb PSO-INSIGHTFUL study. J Eur Acad Dermatol Venereol. 2017; 31: 1876–1883.

  84. Sandoval LF, Huang KE, Harrison J, et al. Calcipotriene 0.005%–betamethasone dipropionate 0.064% ointment versus topical suspension in the treatment of plaque psoriasis: a randomized pilot study of patient preference. Cutis. 2014; 94: 304–309.

  85. Iversen L, Jakobsen HB. Patient Preferences for Topical Psoriasis Treatments are Diverse and Difficult to Predict. Dermatol Ther. 2016; 6: 273–285.

  86. Lambert J, Hol CW, Vink J. Real-life effectiveness of once-daily calcipotriol and betamethasone dipropionate gel vs. ointment formulations in psoriasis vulgaris: final analysis of the 52-week PRO-long study. J Eur Acad Dermatol Venereol. 2015; 29: 2349–2355.

  87. Lebwohl M, Kircik L, Lacour J-P, et al. Twice-weekly topical calcipotriene/betamethasone dipropionate foam as proactive management of plaque psoriasis increases time in remission and is well tolerated over 52 weeks (PSO-LONG trial). Journal of the American Academy of Dermatology. 2021; 84: 1269–1277.

  88. Hendriks AGM, Keijsers RRMC, de Jong EMGJ, et al. Efficacy and safety of combinations of first-line topical treatments in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol. 2013; 27: 931–951.

  89. Ramachandran V, Bertus B, Bashyam AM, et al. Treating Psoriasis With Halobetasol Propionate and Tazarotene Combination: A Review of Phase II and III Clinical Trials. Ann Pharmacother. 2020; 54: 872–878.

  90. Chen H, Sun J, Yang H, et al. Fixed combination of tazarotene and betamethasone dipropionate for treatment of psoriasis vulgaris: The result of a phase 3, multicenter, randomized controlled trial. J Dermatol. 2020; 47: 728–734.

  91. He C, Jin H, Liu X, et al. Tazarotene/Betamethasone Dipropionate Cream in Patients with Plaque Psoriasis: Results of a Prospective, Multicenter, Observational Study. Dermatology. 2021; 237: 603–610.

  92. Lebwohl MG, Stein Gold L, Papp K, et al. Long-term safety and efficacy of a fixed-combination halobetasol propionate 0.01%/tazarotene 0.045% lotion in moderate-to-severe plaque psoriasis: phase 3 open-label study. J Eur Acad Dermatol Venereol. 2021; 35: 1152–1160.

  93. Alexis AF, Desai SR, Han G, et al. Fixed-Combination Halobetasol Propionate and Tazarotene Lotion for Psoriasis in Patients With Skin of Color. J Drugs Dermatol. 2021; 20: 744.

  94. Halobetasol 0.01%/Tazarotene 0.045% Lotion in the Treatment of Moderate-to-Severe Plaque Psoriasis: Maintenance of Therapeutic Effect After Cessation of Therapy. J Drugs Dermatol. 2019; 18: 815–820.

  95. Stein Gold L, Kircik LH, Pariser D, et al. Rapid Onset of Action in Patients With Moderate-to-Severe Plaque Psoriasis With Halobetasol 0.01%/Tazarotene 0.045% Fixed Combination. J Drugs Dermatol. 2018; 17: 863–868.

  96. Pariser DM, Green LJ, Stein Gold L, et al. Halobetasol 0.01%/Tazarotene 0.045% Lotion in the Treatment of Moderate-to-Severe Plaque Psoriasis: Maintenance of Therapeutic Effect After Cessation of Therapy. J Drugs Dermatol. 2018; 17: 723–726.

  97. Gold LS, Lebwohl MG, Sugarman JL, et al. Safety and efficacy of a fixed combination of halobetasol and tazarotene in the treatment of moderate-to-severe plaque psoriasis: results of 2 phase 3 randomized controlled trials. J Am Acad Dermatol. 2018; 79: 287–293.

  98. Sugarman JL, Gold LS, Lebwohl MG, et al. A Phase 2, Multicenter, Double-Blind, Randomized, Vehicle Controlled Clinical Study to Assess the Safety and Efficacy of a Halobetasol/Tazarotene Fixed Combination in the Treatment of Plaque Psoriasis. J Drugs Dermatol. 2017; 16: 197–204.

  99. Kircik LH, Papp KA, Stein Gold L, et al. Assessing the Synergistic Effect of a Fixed Combination Halobetasol Propionate 0.01% and Tazarotene 0.045% Lotion in Moderate-to-Severe Plaque Psoriasis. J Drugs Dermatol. 2019; 18: 279–284.

  100. Del Rosso JQ, Kircik L, Lin T, et al. Halobetasol 0.01%/Tazarotene 0.045% Fixed-combination Lotion in the Treatment of Plaque Psoriasis: Sensitization and Irritation Potential. J Clin Aesthet Dermatol. 2019; 12: 11–15.

  101. Pinter A, van de Kerkhof P. The role of topical therapies along the psoriasis patient journey: An overview from the Symposium ‘Tailoring topical psoriasis treatments to patients’ needs and expectations’ of the 30th EADV Congress 2021. J Eur Acad Dermatol Venereol. 2023; 37 Suppl 1: 3–8.

  102. Milakovic M, Gooderham MJ. Phosphodiesterase-4 Inhibition in Psoriasis. Psoriasis (Auckl). 2021; 11: 21–29.

  103. Psomadakis CE, Han G. New and Emerging Topical Therapies for Psoriasis and Atopic Dermatitis. J Clin Aesthet Dermatol. 2019; 12: 28–34.

  104. Lebwohl MG, Papp KA, Stein Gold L, et al. Trial of Roflumilast Cream for Chronic Plaque Psoriasis. N Engl J Med. 2020; 383: 229–239.

  105. Stein Gold L, Alonso-Llamazares J, Draelos ZD, et al. Effect of Roflumilast Cream (ARQ-151) on Itch and Itch-Related Sleep Loss in Adults with Chronic Plaque Psoriasis: Patient-Reported Itch Outcomes of a Phase 2b Trial. Am J Clin Dermatol. 2023; 24: 305–313.

  106. Snape SD, Wigger-Alberti W, Goehring UM. A phase I randomized trial to assess the effect on skin infiltrate thickness and tolerability of topical phosphodiesterase inhibitors in the treatment of psoriasis vulgaris using a modified psoriasis plaque test. Br J Dermatol. 2016; 175: 479–486.

  107. Lebwohl MG, Kircik LH, Moore AY, et al. Effect of Roflumilast Cream vs Vehicle Cream on Chronic Plaque Psoriasis: The DERMIS-1 and DERMIS-2 Randomized Clinical Trials. JAMA; 328. Epub ahead of print 20 September 2022. DOI: 10.1001/jama.2022.15632.

  108. Bissonnette R, Stein Gold L, Rubenstein DS, et al. Tapinarof in the treatment of psoriasis: A review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent. J Am Acad Dermatol. 2021; 84: 1059–1067.

  109. Lebwohl MG, Stein Gold L, Strober B, et al. Phase 3 Trials of Tapinarof Cream for Plaque Psoriasis. N Engl J Med. 2021; 385: 2219–2229.

  110. Cai L, Chen G-H, Lu Q-J, et al. A double-blind, randomized, placebo- and positive-controlled phase III trial of 1% benvitimod cream in mild-to-moderate plaque psoriasis. Chin Med J. 2020; 133: 2905–2909.

  111. Papp K, Gulliver W, Lynde C, et al. Canadian guidelines for the management of plaque psoriasis: overview. J Cutan Med Surg. 2011; 15: 210–219.

  112. Svendsen MT, Andersen F, Hansen J, et al. Medical adherence to topical corticosteroid preparations prescribed for psoriasis: A systematic review. J Dermatolog Treat. 2017; 28: 32–39.

  113. Carroll CL, Feldman SR, Camacho FT, et al. Better medication adherence results in greater improvement in severity of psoriasis. Br J Dermatol. 2004; 151: 895–897.

  114. Balato N, Megna M, Di Costanzo L, et al. Educational and motivational support service: a pilot study for mobile-phone-based interventions in patients with psoriasis. Br J Dermatol. 2013; 168: 201–205.

  115. Svendsen MT, Andersen F, Andersen KH, et al. A smartphone application supporting patients with psoriasis improves adherence to topical treatment: a randomized controlled trial. Br J Dermatol. 2018; 179: 1062–1071.

  116. Hawkins SD, Barilla S, Feldman SR. Web app based patient education in psoriasis – a randomized controlled trial. Dermatol Online J; 23, https://www.ncbi.nlm.nih.gov/pubmed/28541882 (2017).

  117. Svendsen MT, Feldman SR, Mejldal A, et al. Regular support provided by dermatological nurses improves outcomes in patients with psoriasis treated with topical drugs: a randomized controlled trial. Clin Exp Dermatol. 2022; 47: 2208–2221.

  118. Alinia H, Moradi Tuchayi S, Smith JA, et al. Long-term adherence to topical psoriasis treatment can be abysmal: a 1-year randomized intervention study using objective electronic adherence monitoring. Br J Dermatol. 2017; 176: 759–764.

  119. Reich K, Zschocke I, Bachelez H, et al. A Topical Treatment Optimization Programme (TTOP) improves clinical outcome for calcipotriol/betamethasone gel in psoriasis: results of a 64-week multinational randomized phase IV study in 1790 patients (PSO-TOP). British Journal of Dermatology. 2017; 177: 197–205.

  120. Caldarola G, De Simone C, Moretta G, et al. Role of personalized medication training in improving efficacy and adherence to a topical therapy in psoriatic patients. J Dermatolog Treat. 2017; 28: 722–725.

  121. Danby SG, Draelos ZD, Gold LFS, et al. Vehicles for atopic dermatitis therapies: more than just a placebo. J Dermatolog Treat. 2022; 33: 685–698.

  122. Florek AG, Wang CJ, Armstrong AW. Treatment preferences and treatment satisfaction among psoriasis patients: a systematic review. Arch Dermatol Res. 2018; 310: 271–319.

  123. Koo K, Jeon C, Bhutani T. Beyond monotherapy: a systematic review on creative strategies in topical therapy of psoriasis. J Dermatolog Treat. 2017; 28: 702–708.

  124. Case Medical Research. Study to evaluate the safety and antipsoriatic efficacy of BOS-475 in a psoriasis plaque test. Case Medical Research. Epub ahead of print 8 January 2020. DOI: 10.31525/ct1-nct04221906.

  125. Kernel Networks Inc. Study to evaluate the safety, tolerability, and pharmacokinetics of single and repeat topical administration of BOS-475 in healthy subjects and patients with psoriasis. Case Medical Research. Epub ahead of print 23 May 2019. DOI: 10.31525/ct1-nct03960450.

  126. A Trial of a Botanical Drug (EISO) for Treatment of Mild-to-Moderate Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT03000608?term=SAN021&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).

  127. Safety Study of Ointment for the Treatment of Plaque-type Psoriasis – Full Text View – ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01258088?term=Crisaborole&cond=psoriasis&draw=2&rank=5 (accessed 25 April 2023).

  128. A Phase I Study to Assess Novel Cream in a Psoriasis Plaque Test, https://clinicaltrials.gov/ct2/show/NCT00763204?term=Crisaborole&cond=psoriasis&draw=2&rank=6 (accessed 25 April 2023).

  129. A Phase I Study to Assess Novel Ointment in a Psoriasis Plaque Test, https://clinicaltrials.gov/ct2/show/NCT00762658?term=Crisaborole&cond=psoriasis&draw=2&rank=7 (accessed 25 April 2023).

  130. AN2728 Topical Ointment to Treat Mild-to-Moderate Plaque-Type Psoriasis, https://clinicaltrials.gov/ct2/show/NCT01300052?term=Crisaborole&cond=psoriasis&draw=2&rank=1 (accessed 25 April 2023).

  131. Safety and Efficacy Study of A Novel Ointment to Treat Plaque Type Psoriasis, https://clinicaltrials.gov/ct2/show/NCT00759161?term=Crisaborole&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).

  132. Safety and Efficacy Study of A Novel Ointment to Treat Plaque Type Psoriasis, https://clinicaltrials.gov/ct2/show/NCT00755196?term=Crisaborole&cond=psoriasis&draw=2&rank=3 (accessed 25 April 2023).

  133. Safety and Efficacy Study of a Novel Ointment to Treat Plaque Type Psoriasis – Full Text View – ClinicalTrials.Gov, https://clinicaltrials.gov/ct2/show/NCT01029405?term=Crisaborole&cond=psoriasis&draw=2&rank=4 (accessed 25 April 2023).

  134. A Intra-individual Comparison to Investigate the Efficacy and the Safety of LAS41004 Formulation in Mild to Moderate Psoriasis – No Study Results Posted – ClinicalTrials.Gov, https://clinicaltrials.gov/ct2/show/results/NCT02180464?term=LAS41004&cond=psoriasis&draw=2&rank=1 (accessed 25 April 2023).

  135. Exploratory Study to Investigate Efficacy of LAS41004 in a Psoriasis Plaque Test, https://clinicaltrials.gov/ct2/show/results/NCT01360944?term=LAS41004&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).

  136. Clinical Trial to Investigate Efficacy of LAS41004 in Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT01283698?term=LAS41004&cond=psoriasis&draw=2&rank=3 (accessed 25 April 2023).

  137. Study to Investigate Dose-related Efficacy of LAS41004 in the Treatment of Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT01119339?term=LAS41004&cond=psoriasis&draw=2&rank=4 (accessed 25 April 2023).

  138. Efficacy, Tolerability and Safety of LAS41004 Formulations in a Psoriasis Plaque Test, https://clinicaltrials.gov/ct2/show/NCT02111499?term=LAS41004&cond=psoriasis&draw=2&rank=5 (accessed 25 April 2023).

  139. Efficacy and Tolerability of LAS41004 Formulations in a Non-occlusive Psoriasis Plaque Test – Full Text View – ClinicalTrials.Gov, https://clinicaltrials.gov/ct2/show/NCT01462643?term=LAS41004&cond=psoriasis&draw=2&rank=6 (accessed 25 April 2023).

  140. Randomized Study of PH-10 for Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT01247818?term=PH-10&cond=Psoriasis&draw=2&rank=1 (accessed 25 April 2023).

  141. A Phase 2 Study of Cellular and Immunologic Changes in the Skin of Subjects Receiving PH-10, https://clinicaltrials.gov/ct2/show/NCT02322086?term=PH-10&cond=Psoriasis&draw=2&rank=3 (accessed 25 April 2023).

  142. An Efficacy and Safety Study of PH-10 Aqueous Hydrogel for the Treatment of Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/NCT00941278?term=PH-10&cond=Psoriasis&draw=2&rank=4 (accessed 25 April 2023).

  143. Safety, Tolerability and Efficacy of SNA-120 for Treatment of Pruritus and Psoriasis in Subjects Treated With Calcipotriene, https://clinicaltrials.gov/ct2/show/study/NCT03448081?term=SNA-120&cond=psoriasis&draw=2&rank=1 (accessed 25 April 2023).

  144. Safety, Efficacy, and Tolerability of SNA-120 in Subjects With Pruritus Associated With Psoriasis Vulgaris, https://clinicaltrials.gov/ct2/show/results/NCT03322137?term=SNA-120&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).

  145. Case Medical Research. Safety and efficacy of ARQ-154 foam in adolescent and adult subjects with scalp and body psoriasis. Case Medical Research. Epub ahead of print 16 October 2019. DOI: 10.31525/ct1-nct04128007.

  146. Long-Term Safety of ARQ-151 Cream in Adult Subjects With Chronic Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/NCT03764475?term=Roflumilast&cond=psoriasis&phase=1&draw=2&rank=3 (accessed 25 April 2023).

  147. Maximal Usage Pharmacokinetics and Safety of ARQ-151 in Children With Plaque Psoriasis (ARQ-151-216), https://clinicaltrials.gov/ct2/show/NCT04746911?term=Roflumilast&cond=psoriasis&phase=1&draw=2&rank=6 (accessed 25 April 2023).

  148. Maximal Usage Pharmacokinetics and Safety of ARQ-151 in Children With Plaque Psoriasis (ARQ-151-215), https://clinicaltrials.gov/ct2/show/NCT04655313?term=Roflumilast&cond=psoriasis&phase=1&draw=2&rank=7 (accessed 25 April 2023).

  149. Topical Roflumilast to Treat Scalp and Body Psoriasis (ARRECTOR) – No Study Results Posted – ClinicalTrials.Gov, https://clinicaltrials.gov/ct2/show/results/NCT05028582?term=Roflumilast&cond=psoriasis&phase=2&draw=2&rank=3 (accessed 25 April 2023).

  150. Open-Label Extension Trial of PDE4 Inhibition With Roflumilast for the Management of Plaque Psoriasis – Full Text View – ClinicalTrials.Gov, https://clinicaltrials.gov/ct2/show/NCT04286607?term=Roflumilast&cond=psoriasis&phase=2&draw=2&rank=4 (accessed 25 April 2023).

  151. Bioequivalence Study of Two Treatments for the Treatment of Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/NCT05763082?term=Roflumilast&cond=psoriasis&phase=2&draw=2&rank=5 (accessed 25 April 2023).

  152. Long Term Study to Evaluate Safety and Efficacy of M518101 in Subjects With Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT01908595?term=M518101&cond=psoriasis&draw=2&rank=1 (accessed 25 April 2023).

  153. Efficacy Study Comparing Topical M518101 and Vitamin D3 in Adult Psoriasis Patients, https://clinicaltrials.gov/ct2/show/results/NCT01989429?term=M518101&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).

  154. Evaluate the Efficacy and Safety of M518101 in Subjects With Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT01878461?term=M518101&cond=psoriasis&draw=2&rank=3 (accessed 25 April 2023).

  155. Study to Evaluate the Efficacy and Safety of M518101 in Subjects With Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/results/NCT01873677?term=M518101&cond=psoriasis&draw=2&rank=4 (accessed 25 April 2023).

  156. A Maximal Use Trial Evaluating the Pharmacokinetic Profile of MC2-01 Cream, https://clinicaltrials.gov/ct2/show/results/NCT03462927?term=MC2-01&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).

  157. Long Term Extension Study of Tapinarof for Plaque Psoriasis in Adults (3003), https://clinicaltrials.gov/ct2/show/results/NCT04053387?term=Tapinarof&cond=psoriasis&draw=2&rank=3 (accessed 25 April 2023).

  158. Tapinarof for the Treatment of Plaque Psoriasis in Pediatric Subjects, https://clinicaltrials.gov/ct2/show/NCT05172726?term=Tapinarof&cond=psoriasis&draw=2&rank=7 (accessed 25 April 2023).

  159. A Study to Investigate Efficacy and Safety of VTAMA (Tapinarof) Cream, 1% in Intertriginous Plaque Psoriasis, https://clinicaltrials.gov/ct2/show/NCT05680740?term=Tapinarof&cond=psoriasis&draw=2&rank=1 (accessed 25 April 2023).

  160. A Study to Investigate Efficacy and Safety of VTAMA® (Tapinarof) Cream, 1% in Plaque Psoriasis in the Head and Neck Region, https://clinicaltrials.gov/ct2/show/NCT05789576?term=Tapinarof&cond=psoriasis&draw=2&rank=2 (accessed 25 April 2023).


]]>
Review of Dermato-Surgery Peri-Procedure Care Promoting Wound Healing https://www.skintherapyletter.com/supplement/dermato-surgery-peri-procedure-wound-healing/ Mon, 29 May 2023 10:00:57 +0000 https://www.skintherapyletter.com/?p=14307 Charles W Lynde MD, FRCPC1, Joel Claveau MD, FRCPC, DABD2, Lyn Guenther MD FRCP3, Sameh Hanna MD, DABD4, Angela Law MD, FRCPC5, Monica Li MD, FRCPC6, Jaggi Rao MD, FRCPC7, Catherine Zip MD, FRCPC8, Anneke Andriessen PhD9

Affiliations


1Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Associate Professor, Department of Medicine University of Toronto, Toronto, ON, Canada; Lynderm Research, Markham, ON, Canada.

2Diplomate, American Board of Dermatology, Fellow, Royal College of Physicians and Surgeons of Canada, Associate Professor, Department of Medicine, Université Laval, Quebec City, QC, Canada, Director Melanoma and Skin Cancer Clinic, Le Centre Hospitalier Universitaire de Québec, Hôtel-Dieu de Québec, Quebec City, QC, Canada.

3Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Professor, Division of Dermatology, Department of Medicine Western University, London, ON, Canada. President Guenther Research Inc.

4Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Division of Dermatology, University of Toronto, Dermatology on Bloor, Yorkville, Toronto, ON, Canada.

5Fellow, Royal College of Physicians and Surgeons of Canada; Clinical Instructor, Department of Dermatology and Skin Science University of British Columbia, Vancouver; Clinic One Three Eight Dermatology, Vancouver, BC.

6Clinical Instructor, Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada, Diplomate, American Board of Dermatology, Fellow, Royal College of Physicians and Surgeons of Canada, Vancouver Skin MD, Vancouver, BC, Canada.

7Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Clinical Professor, University of Alberta, Edmonton, AB, Canada.

8Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Clinical Associate Professor, Department of Medicine, University of Calgary, Calgary, AB, Canada.

9Radboud UMC Nijmegen, Andriessen Consultants, Malden, The Netherlands.


Disclosures: The authors disclosed receipt of the following financial support for the research, authorship, and publication of this manuscript. This work was supported by an unrestricted educational grant from La Roche-Posay Canada. All authors contributed to the study and the manuscript, reviewed it, and agreed with its content. LG: AbbVie, Amgen, Bausch Health, Boehringer Ingelheim, Celgene, Eli Lilly, Galderma, Janssen, La Roche Posay, LEO Pharma, Merck Frosst, Novartis, Pfizer, Sun Pharmaceuticals, and UCB – consultant, investigator, and speaker; BMS Consultant and investigator.

Abstract

Introduction: Over the years, the number of surgical excisions, cryosurgery, electrodesiccation, curettage, and facial laser treatment has increased. Presently pre- and post-procedural care and minor wound management remain highly variable, and standards are lacking. This review addresses peri-procedural treatment requirements to optimize outcomes, prevent infection, enhance comfort, and reduce downtime while reducing inflammation and time to healing.

Methods: A panel of eight Canadian dermatologists (panel) who perform dermato-surgery convened to discuss the findings of a structured literature search on peri-procedural measures for surgical excision, cryosurgery, electrodesiccation, curettage, and facial laser treatment. The information from the literature searches, together with the panels’ expert opinions and experience, was applied in this review.

Results: Peri-procedural measures depend on individual patient factors and the type of treatment. Post-procedure moisturizer application may be beneficial for promoting wound healing. Studies have shown no differences in infection rates between post-procedural sites treated with topical antibiotics and petrolatum-based products. Moreover, topical antibiotics are among the top ten allergic contact dermatitis-causing agents.

Conclusions: Cutaneous healing should occur with minimal discomfort and an esthetic scar. Applying a moisturizer without an antibiotic was shown to be beneficial in promoting cutaneous healing. Standards for peri-procedural care and minor wound management may support healthcare providers in improving patient outcomes.

PDF Download


Introduction

Over the years, the number of skin surgery procedures (surgical shave and elliptical excision, Mohs surgery, cryosurgery, electrodesiccation, curettage, electrodesiccation and curettage (ED&C), laser, and other facial rejuvenation treatments) has increased. The American Society for Dermatologic Surgery reported over 15.6 million cosmetic treatments performed in 2020 in the United States (U.S.) alone.1 About 13.3 million of these were minimally invasive cosmetic procedures, including neuromodulator injections, soft tissue filler injections, microdermabrasion and chemical peels).1 The top minimally invasive cosmetic procedures comprised neurotoxins 3.65 million (33%), dermal fillers 1.85 million (32%), skin treatment (chemical peels, hydro-facials) 1.39 million (6%), hair removal 0.45 million (2%), skin treatment (combination Lasers) 0.43 million (4%) and skin tightening 0.39 million (7%).2

While many guidance and consensus documents exist that describe best practices for performing skin surgery procedures, few discuss specific pre- and post-procedure measures. Surveys of aesthetic medicine providers confirmed a lack of consistency in the types and duration of peri-procedural measures for dermatosurgery, laser, and minimally invasive cosmetic procedures.3,4 Presently, skin surgery pre and post clinical care and minor wound management remain highly variable and there are no standards,3,4 however, cutaneous healing should occur with minimal discomfort and an esthetic scar. This review addresses peri-procedural treatment requirements to optimize outcomes, prevent infection, enhance comfort, and reduce downtime while reducing inflammation and time to healing.

Methods

The project aims to provide insights into skin conditions and lesions created when performing dermatosurgery, minimally invasive cosmetic procedures, and facial laser treatment, followed by developing standards for these measures.

A panel of eight Canadian dermatologists (panel) who perform skin surgery was convened to discuss the findings of a structured literature search on peri-procedural measures for surgical excision, cryosurgery, electrodesiccation, curettage, and facial laser treatment.

We searched PubMed and Google Scholar (secondary source) databases for studies published from 2010 until September 2022. We divided the search terms into four groups to allow optimal results and avoid duplications.

Group 1: Pre-/post-procedure measures AND surgical excision OR curettage OR ED & C) OR cryotherapy OR facial laser treatment; AND Guidelines OR Algorithms OR consensus papers; AND Adverse events OR Complications OR Pain OR Bruising OR Swelling OR Discoloration OR Infection OR Reactivation of herpes simplex virus OR Antiviral medication OR Scarring OR Comfort OR Sun exposure; AND antimicrobial stewardship OR topical antimicrobials OR systemic antimicrobials

Group 2: Surgical excision, curettage, ED & C, cryotherapy AND healing by primary intent; AND post-procedure measures OR skincare OR topical wound treatment OR wound dressings

Group 3: Surgical excision healing by secondary intent; AND post-procedure measures OR skincare OR topical wound treatment OR wound dressings

Group 4: Peri-procedure measures for laser treatment; AND Guidelines OR Algorithms OR Consensus papers; AND Adverse events OR Complications OR Pain OR Bruising OR Swelling OR Discoloration OR Infection OR Reactivation of herpes simplex virus OR Antiviral medication OR Scarring OR Comfort OR Sun exposure OR Skincare OR wound healing regimen

Exclusion criteria were no original data, information not specific to peri-procedure measures for skin surgery, minimally invasive procedures, and facial laser treatment, and publication in a language other than English. The results of the searches were evaluated independently by two reviewers (AA, TE) and yielded 98 papers. After reviewing abstracts and removing duplicates and papers that did not contribute to this review (n = 43), fifty-five remained. Guidance and consensus documents are available on dermatosurgery, minimally invasive procedures, and facial laser treatment; however, few discussed peri-procedural measures and wound treatment which did not allow for grading.

Results

Procedures Included in the Review

The review addresses the following procedures: surgical excision, cryotherapy, electrodesiccation, curettage, ED&C, and facial laser treatment.

Surgical Excision

A Canadian national survey amongst dermatologists showed that epileptiform excisions, shave excisions, punch biopsies, curettage, and ED&C was most frequently performed, whereas Mohs micrographic surgery (MMS) was the least frequent procedure.5 These procedures are used to remove benign and malignant lesions.5

Adverse events are usually minor and include bleeding, hematoma, wound dehiscence, infection, discoloration (post-inflammatory hyper (PIH) or hypopigmentation), and atrophic, hypertrophic, or keloid scar formation.5

Curettage and Electrodesiccation

Curettage or electrodesiccation can be used to remove benign (e.g. condyloma acuminatum, seborrheic keratosis, pyogenic granuloma, excess granulation tissue) and malignant lesions. With malignant lesions, curettage is often combined with electrodesiccation (ED&C) or cryotherapy. For many indications, ED&C has been replaced by curettage alone, as it yields similar cure rates and a better cosmetic outcome.12-16 Dermatologists routinely perform these procedures in their offices.

The disadvantage of curettage with or without electrodesiccation or cryotherapy is the absence of histopathologic margin evaluation.13-15 Studies on low-risk non-melanoma skin cancers show 5-year ED&C cure rates from 91 to 97%.15,16

Cryosurgery

Cryosurgery has several indications for both benign and malignant lesions. Benign lesions that can be treated with cryosurgery include seborrheic keratosis, verruca, skin tags, molluscum contagiosum, solar or senile lentigo, and actinic keratosis.16-20 In the case of exophytic lesions, curettage should be considered prior to cryotherapy. This procedure can be delivered quickly and cost-effectively in an outpatient setting.16-20

Recurrence rates of actinic keratoses treated with cryotherapy vary significantly (1–39%) in prospective studies likely due to a lack of homogeneity in patient and tumor selection, follow-up period, and inter-operator performance approach.19,20 Malignant lesions can be treated with this modality, but the depth and extent of freezing may not be known without the use of a cryoprobe. Light cryotherapy often leaves no mark but may not remove the desired lesions. A deeper freeze may be associated with permanent white marks due to the destruction of melanocytes, postinflammatory hyperpigmentation, pseudoepitheliomatous hyperplasia, and depressed scars, which may resolve spontaneously, alopecia which may be permanent due to the destruction of hair bulge cells, and tissue distortion (e.g. nail dystrophy or notching of cartilage) due to damage to the nail matrix/cartilage.16 Cryosurgery should not be used for conditions that can be exacerbated by cold exposure (cryoglobulinemia, multiple myeloma, Raynaud disease, cold urticaria) and a previous history of cold-induced injury or poor circulation at the site or in that body part.17 Vasoconstriction induced by cryosurgery in poorly perfused areas may lead to tissue necrosis.17

Facial Laser treatment

Many different types of lasers are available, and laser treatment has many indications.3 Pulsed dye lasers (PDL) may be used for the treatment of port wine stains in adults and children. A further indication for PDL may be the treatment of telangiectatic rosacea.3 Other indications include radiodermatitis, ulcerated hemangioma, and erythrose of the neck.

For hair removal, various types of lasers, such as pulsed diode lasers, Nd: YAG lasers, or intense pulsed light (IPL) lasers, can be used.3 With the proper preparation and an experienced provider, patients with richly pigmented skin can also safely undergo laser and light-based treatments for hair removal, pigment abnormalities, skin resurfacing, and skin tightening.21 Facial rejuvenation aims to correct rhytides, telangiectasias, lentigines, and skin texture.3 Laser and energy devices may be used for facial resurfacing, depending on clinical indication, individual subject characteristics, and the operator’s expertise.3,4 Lasers, such as CO2 or erbium laser, can be used to remove tattoos, Ota’s nevus, and, to a lesser degree, liver spots and Becker’s nevus.3,21-24 These lasers permit dermabrasion in treating verrucous hematoma, extensive benign superficial dermo-epidermal lesions, and the esthetic treatment of non-muscular wrinkles, i.e., excepting wrinkles of the forehead and nasal sulcus.21-24 Laser-assisted administration of photodynamic therapy (PDT) photosensitizers has demonstrated efficacy for superficial BCC.25-27 The recurrence rates of BCC were markedly reduced in two randomized controlled trials using aminolaevulinic acid PDT with erbium compared to PDT and erbium.25-27

Cutaneous adverse events with all types of laser treatment, such as reactive hyperemia, edema, scarring, and discomfort, may occur.3,21-24

Pre-procedural Measures

All Discussed Procedures

Skin conditions and infections can exacerbate and cause complications following skin surgery.3,4,28,29 For all patients considering having a procedure done, medical history including current and previous treatments, including procedures for the lesion under question, what the patient and treating physician hope to accomplish with the proposed procedure, current medications, and allergies, history of systemic disease, history of abnormal wound healing such as post-inflammatory dyspigmentations, abnormal scarring.3,4,28,29 In patients that have had previous surgical treatments anywhere on their body, it is often good to assess the resultant scars prior to agreeing to perform a procedure on the individual.

Before the procedure, patients should attend the clinic with clean skin without makeup or cosmetics in the area to be treated.30-34 Hair should be secured away from the treatment area. Patients should not shave since shaving can cause micro-wounds and increase the risk of infection.

Curettage, Electrodesiccation, ED&C, and Cryotherapy

Typically, additional pre-procedural measures are not required.

Laser Treatment

Laser devices are frequently used for facial rejuvenation. Device and treatment choice depends on individual patient characteristics, expectations, and physician expertise.22-24 For optimal treatment outcomes, patients should be appropriately selected and screened, followed by a physical exam before treatment, depending on the type of procedure.23,24 Outcomes of previous skin or surgical treatments are obtained, especially dermabrasion (if previously performed) responses.28,29 People with hypertrophic scars, keloids, or changes in pigmentation will need peri-procedural cosmetic practices to reduce the risk of these complications or should be advised against the procedure.28,29 Previously published surveys and algorithms confirmed more than 90% of clinicians recommended sun avoidance before, during, and after facial cosmetic treatments.3,28,29

Peri-procedural measures are based on individual patient factors and the type of laser procedure.21-24 For patients receiving ablative laser therapy, pre-treatment of underlying conditions, such as rosacea, dermatitis, and prevention of recurrences in patients with recurrent Herpes simplex, may reduce complications and enable adequate healing time to restore the skin’s barrier function.3,28 Check patients for remote infections. Caution should be applied when considering extensive laser procedures in patients with compromised immune systems, such as HIV, cancer treatment, immunotherapy, or poorly controlled diabetes.3-28

Measures During the Procedure

Surgical Excision

Prior to the procedure, the surgical site may be prepared with chlorhexidine (2%), isopropyl alcohol (70%), or hypochlorous acid (HOCL).30-34 Povidone iodine is less commonly used since it is messy and permanently stains clothing. Chlorhexidine is an effective cleanser but may induce allergic contact dermatitis and can be toxic to the eyes and ears, whereas isopropyl alcohol is flammable and can irritate the skin.31,32 Stabilized HOCL is highly active against bacteria, viruses, and fungal organisms without chlorhexidine’s oto or ocular toxicity; it has been proposed as a future gold standard for wound care.33 HOCL has been shown to have dose-dependent favorable effects on fibroblast and keratinocyte migration compared to povidone-iodine and media alone.33,34 It also increases skin oxygenation at treatment sites which may aid healing. There is evidence that HOCL may reduce the risk of hypertrophic scars and keloids as it reduces inflammation and the risk of infection. 33,34

Local anesthesia and pain management can be customized depending need based on the procedure and patient factors and added at the treating physician’s discretion.

Cryosurgery, Electrodesiccation, Curettage, ED&C

Minimal skin preparation is needed for cryosurgery, ED or curettage if the procedure does not result in bleeding. Therefore, antiseptics are not typically indicated in the majority of procedures.16 However, topical antiseptics should be applied to lesions that are to be curetted or treated with ED&C.16

Pain management can be customized depending on the procedure and added at the treating physician’s discretion. Pre-procedure anesthesia should be considered for lesions to be curetted or treated with ED&C and large or extensive lesions. Topical anesthetics applied several hours before the procedure or intralesional anesthesia can help reduce surgical pain. For small lesions, injection of local anesthetic may be more painful than the procedure itself and is therefore not indicated.

Laser Treatment

Before the procedure, makeup removal and skin cleansing using a gentle cleanser is required.30-34 The treatment site is prepared with chlorhexidine (2%), isopropyl alcohol (70%), or hypochlorous acid (HOCL).30-34 Local anesthesia and pain management can be customized depending on the procedure and added at the discretion of the treating physician.28,29

Post-procedural and Wound Healing Measures

Surgical Excision Healing by Primary Intent

A local anesthetic given before the procedure takes about 1-2 hours to wear off. For further pain management post-surgery, oral acetaminophen is preferred over aspirin, naproxen, or ibuprofen, as the latter encourages bleeding.

Topical postoperative wound care involves maintaining a protected wound and a clean, moisturized surface.35,36 Wound care includes cleansing with either a gentle cleanser or water, applying a topical, and covering the wound with a dressing.35,36 While previous investigators have evaluated methods for reducing risks of adverse events due to the treatment procedure, robust studies on post-procedural wound management for primarily closed wounds are lacking.35-38

Physicians typically cover sutured wounds using either a dressing, adhesive tape strips, or both.35-38 Wound dressings can be classified according to their function, material, and physical form of the dressing (Table 1).35 Wound dressings for sutured wounds are typically left in place for 24-48 hours after surgery.35-37 If there is a lot of tension on the wound or bleeding during the procedure, the dressing is typically left on for 2 or more days. The dressing can act as a physical barrier to protect the wound until skin continuity is restored and to absorb exudate from the wound, and prevent bacterial contamination from the external environment.35-37 Some studies have found that the moist environment created by some dressings accelerates wound healing, although excessive exudate can cause maceration of the suture line and peri-wound skin.35-37 A dressing should absorb wound exudate, minimize maceration and prevent bacterial contamination.36

Table 1: Types of wound dressings and moisturizers

Phase of healing Classification/type Primary intention healing Secondary intention healing
Initial phase Function Keep the suture line dry, clean, and protected against damage Absorb exudate, nonadherent, donate fluid, maintain a moist wound healing environment,
Type of material Dry surgical dressing or adhesive tapes Hydrocolloid, foam, alginate, hydrogels, film dressings
Inflammation/tissue formation Components and format White petrolatum, ointment
Water-free petrolatum, humectants, and lipids, ointment
Madecassoside, panthenol, copper-zinc-manganese, cream, emollient, drops, gel, lotion, oil, ointment, solution, and spray
HOCL, solution, spray, gel
Silicone gel, sheeting
Prevention/treatment of scarring Components and format Self-adhesive propylene glycol and hydroxyethyl cellulose sheeting

The utility of dressing surgical wounds beyond 48 hours of surgery is controversial, although35-37 in addition to the above, dressings can prevent irritation from rubbing from clothing.

A systematic review on early versus delayed dressing removal after primary closure of clean superficial wounds found no detrimental effect on the patient when removing the dressing after 24 hours.35 However, the point estimate supporting the conclusion is based on very low-quality evidence.35

Cleansing the suture line after dressing removal post-procedure using an antimicrobial solution or applying an antimicrobial ointment is equally controversial.35,36

The incidence of surgical site infections (SSI) varies between 1% and 80% depending upon the types of surgery, the hospital setting (community hospital, tertiary‐care hospital, etc.), the classification of surgical wounds, and the method of skin closure.35 In addition, many skin surgeries are performed in the community in physician offices where infection rates range from 0.2% to 2.5%.41 Antimicrobial resistance is a growing concern, especially when antimicrobial products are used routinely and inappropriately.39-44 Moisturizers are frequently used to keep the wound moist; however, evidence for beneficial effects on sutured wounds is inconclusive and mainly from small studies.45-50

After suture removal, the topical application of a moisturizer containing madecassoside, panthenol, and copper-zinc-manganese has been shown to be beneficial.45-48 The product is available as a cream, emollient, drops, gel, lotion, oil, ointment, solution, and spray in a concentration of 2-5%.45-48 Petrolatum jelly and water-free petrolatum-containing ointments or products containing HOCL may also be used postoperatively to keep the wound moist, however, since they are occlusive, they may induce maceration.49,50

In a study on postoperative wound care after MMS procedures (N = 76) patients were randomized to wound care with an ointment containing petrolatum, humectants, and natural barrier lipids (group 1: n = 27), white petrolatum (group 2: n = 32) or no ointment (group 3: n = 17).50 Group 1 demonstrated an incidence of swelling and erythema of 52% (14/27); in group 2 erythema occurred in 12% (4/32) and swelling and erythema in 9% (3/27); and in group 3 erythema was noted in 12% (2/17) and swelling and erythema in 6% (1/17) patients.50 The use of antibiotic-containing ointments is best avoided as they may cause allergic reactions and contribute to antimicrobial resistance.39-44 Moreover, the rate of surgical site infections in minor surgical wounds is low and preventive use of topical antibiotics is not indicated.35,44-52

If a hypertrophic scar develops, treatment with a silicone gel sheet or gel may improve the scar appearance and pain. Another option is self-adhesive propylene glycol and hydroxyethyl cellulose sheeting; however, evidence of the efficacy of these products in improving scar appearance and reduction of pain is inconclusive.53

Surgical Excision, Curettage, ED&C, and Cryosurgery Healing by Secondary Intent


In a simplified model, wound healing processes occur in four phases 1) vascular response, 2) coagulation, 3) inflammation, and 4) new tissue formation.54-57 During the initial inflammatory phase, the adaptive immune system is activated to prevent infection at the wound site.54-57 Macrophages remove neutrophils, bacteria, and debris from the wound site. They then change phenotype to M2 macrophages, starting the proliferative and epithelialization phase, producing anti-inflammatory mediators and extracellular matrices.54-57 If this phase is hindered, wound healing may be disturbed. The proliferative or epithelialization phase overlaps with the inflammatory phase and usually takes two to three weeks post-procedure.54 During this phase, the dermal matrix matures, and inflammatory processes continue in the reticular dermis. The reticular dermis is sensitive to wound stress and infection and is affected by patient-related conditions such as age, sun exposure, or genetic profile.54-57 Persistent inflammation plays a role in the development of hypertrophic or keloid scars, although it may not be the entire cause.54-57 During the remodeling phase the wound contracts, and collagen remodeling occurs, which can last for up to a year post-procedure.

Review of Dermato-Surgery Peri-Procedure Care Promoting Wound Healing - image
Figure 1: Time sequence of normal wound healing

 

Pain management is similar to that previously discussed for primary healing wounds. Patients should be instructed to avoid sun exposure to the treated area, along with sun protection measures such as sunscreen with SPF 50 plus UVA block to prevent discoloration.3,4,28,29

When a dressing is used post-procedure, the patient should be instructed to keep it dry and leave it in place for 24-48 hours. After dressing removal, a gentle, non-irritating cleanser can be used twice daily to cleanse the treated area.3,4,28,29 The wound site must be handled with care, particularly during the initial healing phase of 7-10 days when newly formed epithelium can be early inadvertly removed.3,4,28,29

Moisturizers or products containing HOCL may be applied to keep the wound moist and to promote wound healing (Table 2).49,50 Similar to what was discussed for sutured wounds, moisturizers containing antibiotics should not be used on wounds not showing signs of infection to avoid allergic reactions and antimicrobial resistance.39-44,49-52

Table 2: Complications from laser treatment

Adverse event Details
Pain Each laser pulse's snapping and burning sensation can produce a minimal to moderate amount of discomfort.
Purpura, bruising Immediately after the laser treatment, the area will sometimes appear grey or blue-black in color. The discoloration will fade over the next 7–10 days.
Swelling Within a few minutes after the laser treatment, erythema and edema may occur over the treatment area. Areas most likely to swell are under the eyes and neck. The swelling subsides within 3–5 days if ice is regularly applied. Parallel and post-cooling will diminish the amount of edema.
Discoloration, blisters, scabs These adverse events rarely develop and are mostly caused by overtreatment. Grey or pale white discoloration of the epidermis is a sign of early dermal damage and will last only a few seconds.
Blister formation, epidermal disruption, and epidermal necrosis (dermal in severe cases) Intense cooling, radiant exposure reduction, and pulse duration prolongation should be considered. These can take 1–2 weeks to resolve. The findings can be immediate or delayed. Treat a test spot for at least 5 min before proceeding with full treatment.
Infection. Swelling, redness, crusting, pain, and fever Topical antiseptics or oral antibiotics should ideally be used for presumed infection after taking a wound culture.
Reactivation of herpes simplex on the face. Prophylactic oral virostatic therapy is recommended when the patient has frequent herpetic recurrences (more than 6 per year), starting the day before laser treatment
Hyperpigmentation More common in richly pigmented skin. Fades within 2–6 months. Worsens if the treated area is exposed to the sun. Topical bleaching cream, such as hydroquinone, can be used to speed up the process.
Hypopigmentation Caused mainly by overtreatment. Pale areas usually darken or re-pigment within 3–6 months. But they could be persistent, most frequently on the neck.

Modified with permission from Gold et al. J Drugs Dermatol. 2021;20:1(Suppl):s3-1124

A moisturizer containing madecassoside, panthenol, and copper-zinc-manganese may be beneficial.45-48 It is available as a cream, emollient, drops, gel, lotion, oil, ointment, solution, and spray in a concentration of 2-5%.45-48,59 In an unpublished international observation study, 11,464 adults, children, and infants with a mean age of 31 years (1 week to 97 years) with superficial wounds applied the ointment for 14 days. Clinical (desquamation, cracks, erosion, erythema) and subjective symptoms (tightness, pain, burning sensation, pruritus) showed a significant improvement at 14 days, while tolerance and esthetic aspects of the ointment were rated good.

Wound Healing After Laser Procedures


For patients undergoing ablative procedures, prophylactic oral antivirals such as acyclovir (400 mg orally three times daily) or valacyclovir (500 mg orally two times daily), starting typically one day before resurfacing and continuing for 6–10 days post-procedure may be indicated.3,28 Patients undergoing ablative laser treatment with baseline melasma or post-inflammatory hyperpigmentation may require pre-procedure lightening agents such as hydroquinone 2-4% cream twice per day in the morning and evening.3,28

Gold and colleagues developed an algorithm for pre-/post-procedure measures for facial laser and energy device treatment and listed complications from laser treatment and actions that can be taken (Table 2).28

Post-laser management is similar to that discussed for secondary healing wounds.

Limitation

Although few studies on peri-procedural measures for dermato-surgery care and minor wound management are available, the advisors recommend applying a moisturizer without antibiotics for antimicrobial stewardship and contact allergy avoidance.

Conclusion

Peri-procedural measures depend on individual patient factors and the type of dermato-surgery. Standards are required to support healthcare providers to optimize outcomes, prevent infection, enhance comfort, and reduce downtime while reducing inflammation and time to healing. Applying a moisturizer without an antibiotic was shown to be beneficial in promoting cutaneous healing. Studies are required to evaluate purpose-designed moisturizers for dermato-surgery post-procedural application improving patient outcomes.

References



  1. American Society of Plastic Surgeons. Plastic surgery statistics report [document on the internet]. 2020 [cited 2023 Jan 10]. Available from: https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf. Accessed Jan 10, 2023.

  2. Aesthetic plastic surgery national databank statistics 2020–2021. Aesthet Surg J. 2022 Jun;42(Suppl 1):1–18.

  3. Gold MH, Andriessen A, Cohen JL, et al. Pre-/postprocedure measures for laser/energy treatments: a survey. J Cosmet Dermatol. 2020 Feb;19(2):289-95.

  4. Gold MH, Andriessen A, Goldberg DJ, et al. Pre-/postprocedure measures for minimally invasive, nonenergy aesthetic treatments: a survey. J Cosmet Dermatol. 2020 Jul;19(7):1587-92.

  5. Freiman A, Rosen N, Sasseville D, et al. Dermatologic surgery practice and skin cancer treatment in Canada: results of a national survey. Dermatol Surg. 2005 Jan;31(1):27-32.

  6. Canadian Dermatology Association. 2017 Skin cancer fact sheet [document on the internet]. 2017. Available from: https://dermatology.ca/wp-content/uploads/2017/11/2017-Skin-Cancer-Fact-Sheet.pdf

  7. Canadian Cancer Society. Melanoma skin cancer statistics [Internet]. Canadian Cancer Society; [updated 2022 May]. Available from: http://www.cancer.ca/en/cancer-information/cancer-type/skin-melanoma/statistics/?region=on

  8. BC Cancer. Skin, non-melanoma [Internet]. Provincial Health Services Authority; [updated 2021 Oct] Available from: http://www.bccancer.bc.ca/health-info/types-of-cancer/skin/skin-non-melanoma.

  9. Gulleth Y, Goldberg N, Silverman RP, Gastman BR. What is the best surgical margin for a basal cell carcinoma: a meta-analysis of the literature. Plast Reconstr Surg. 2010 Oct;126(4):1222–31.

  10. Prickett KA, Ramsey ML. Mohs micrographic surgery. Treasure Island (FL): StatPearls Publishing; 2021.

  11. Connolly SM, Baker DR, Coldiron BM, et al. AAD/ACMS/ASDSA/ASMS 2012 appropriate use criteria for Mohs micrographic surgery: a report of the American Academy of Dermatology, American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and the American Society for Mohs Su. J Am Acad Dermatol. 2012 Oct;67(4):531–50.

  12. Fahradyan A, Howell AC, Wolfswinkel EM, et al. Updates on the management of non-melanoma skin cancer (NMSC). Healthcare (Basel). 2017;5(4):82.

  13. Ferry AM, Sarrami SM, Hollier PC, et al. Treatment of non-melanoma skin cancers in the absence of Mohs micrographic surgery. Plast Reconstr Surg Glo Open. 2020 Dec;8(12): e3300.

  14. Bichakjian CK, Olencki T, Aasi SZ, et al. Basal cell skin cancer, version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016 May;14:574–97.

  15. Blixt E, Nelson D, Stratman E. Recurrence rates of aggressive histologic types of basal cell carcinoma after treatment with electrodesiccation and curettage alone. Dermatol Surg. 2013 May;39(5):719–25.

  16. Mazzoni D, Muir J. A guide to curettage and cautery in the management of skin lesions. Aus J Gen Pract. 2021;50(12):893-97.

  17. Farhangian ME, Snyder A, Huang KE, et al. Cutaneous cryosurgery in the United States. J Dermatolog Treat. 2016;27(1):91-4.

  18. Goldberg LH, Kaplan B, Vergilis-Kalner I, Landau J. Liquid nitrogen: temperature control in the treatment of actinic keratosis. Dermatol Surg. 2010 Dec;36(12):1956-61.

  19. Basset-Seguin N, Ibbotson SH, Emtestam L, et al. Topical methyl aminolevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur J Dermatol. 2008 Sep-Oct;18(5):547-53.

  20. Thissen MRTM, Nieman FHM, Ideler AHLB, et al. Cosmetic results of cryosurgery versus surgical excision for primary uncomplicated basal cell carcinomas of the head and neck. Dermatol Surg. 2000 Aug;26(8):759-64.

  21. Alexi s AF. Lasers and light-based therapies in ethnic skin: treatment options and recommendations for fitzpatrick skin types V and VI. Br J Dermatol. 2013 Oct;169 (Suppl 3):91-7.

  22. Dierickx C. Using normal and high pulse coverage with picosecond laser treatment of wrinkles and acne scarring: long-term clinical observations. Lasers Surg Med. 2018 Jan;50(1):51–55.

  23. Wu DC, Fitzpatrick RE. facial rejuvenation via sequential combined use of multiple laser modalities: safety and efficacy. Lasers Surg Med. 2016 Aug;48(6):577–83.

  24. Ibrahimi OA, Saedi N, Kilmer SL. Laser-based treatment of the aging face for skin resurfacing: Ablative and nonablative lasers. Aesthetic Surgical Procedures. 2015;Part 3:549-60.

  25. Choi SH, Kim KH, Song KH. Er:YAG ablative fractional laser primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12 month follow up results of a randomized, prospective, comparative trial. J Eur Acad Dermatol Venereol. 2016 May;30(5):783–8.

  26. Lear JT, Migden MR, Lewis KD, et al. Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study. J Eur Acad Dermatol Venereol. 2018 Mar;32(3):372–81.

  27. Nasr I, McGrath EJ, Harwood CA, et al. British association of dermatologists guidelines for the management of adults with basal cell carcinoma 2021. Br J Dermatol. 2021 Nov;185(5):899-20.

  28. Gold M, Andriessen A, Goldberg DJ, et al. algorithm for pre-/post-procedure measures for facial laser and energy device treatment. J Drugs Dermatol. 2021 Jan;20:1(Suppl):s3-11.

  29. Gold M, Andriessen A, Goldberg DJ, et al. Algorithm for nonenergy and injectable treatment pre-/post-procedure measures. J Drugs Dermatol. 2021 Nov;20(11):ss3s-s10s.

  30. American Society for Dermatologic Surgery (ASDS). 2019 ASDS Consumer Survey on Cosmetic Dermatologic Procedures [document on the internet]. 2019 Oct [cited 2020 Mar 11]. Available from: https://www.asds.net/Portals/0/PDF/consumer-survey-2019-infographic.pdf

  31. Bever GJ, Brodie FL, Hwang DG. Corneal injury from presurgical chlorhexidine skin preparation. World Neurosurg. 2016 Dec;96:610.e1-610.e4.

  32. Steinsapir KD, Woodward JA. Chlorhexidine keratitis: safety of chlorhexidine as a facial antiseptic. Dermatol Surg. 2017 Jan;43(1):1-6.

  33. Gold MH, Andriessen A, Bhatia AC, et al. Topical stabilized hypochlorous acid: The future gold standard for wound care and scar management in dermatologic and plastic surgery procedures. J Cosmet Dermatol. 2020;19(2):270-7.

  34. Gold MH, Andriessen A, Dayan SH, et al. Hypochlorous acid gel technology-Its impact on post-procedure treatment and scar prevention. J Cosmet Dermatol. 2017;16(2):162-167.

  35. Toon CD, Lusuku C, Ramamoorthy R, et al. Early versus delayed dressing removal after primary closure of clean and clean‐contaminated surgical wounds. Cochrane Database Syst Rev. 2015 Sep;(9): CD10259.

  36. Downie F, Egdell S, Bielby A, Searle R. Barrier dressings in surgical site infection prevention strategies. Br J Nurs. 2010 Nov;19(20):S42‐6.

  37. Kim JYS, Kozlow JH, Mittal B, et al. Guidelines of care for the management of basal cell carcinoma. J Am Acad Dermatol. 2018 Mar;78(3):540-59.

  38. Shao K, Taylor L, Miller CJ, et al. The natural evolution of facial surgical scars: a retrospective study of physician-assessed scars using the patient and observer scar assessment scale over two-time points. Facial Plast Surg Aesthet Med. 2021 Sept:330-8.

  39. Gibbons JA, Smith HL, Kumar SC, et al. Antimicrobial stewardship in the treatment of skin and soft tissue infections. Am J Infect Control. 2017 Nov;45(11):1203-07.

  40. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev. 2017 Jul;30(3):827-60.

  41. Del Rosso JQ, Webster GF, Rosen T, et al. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society. J Clin Aesthet Dermatol. 2016 Apr;9(4):18-24.

  42. McNeil JC, Hulten KG, Kaplan SL, Mason EO. Decreased susceptibilities to retapamulin, mupirocin, and chlorhexidine among staphylococcus aureus isolates causing skin and soft tissue infections in otherwise healthy children. Antimicrob Agents Chemother. 2014 May;58(5):2878-83.

  43. Lim JS, Park HS, Cho S, Yoon HS. Antibiotic susceptibility and treatment response in bacterial skin infection. Ann Dermatol. 2018 Apr;30(2):186-91.

  44. D’Cunha NM, Peterson GM, Baby KE, Thomas J. Impetigo: a need for new therapies in a world of increasing antimicrobial resistance. J Clin Pharm Ther. 2018 Feb;43(1):150-53.

  45. Hrubša M, Siatka T, Nejmanová I, et al. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients. 2022 Jan;14(3):484. doi: 10.3390/nu14030484

  46. Baron JM, Glatz M, Proksch E. Optimal Support of Wound Healing: New Insights. Dermatology. 2020;236(6):593–600.

  47. Proksch E, de Bony R, Trapp S, Boudon S. Topical use of dexpanthenol: a 70th anniversary article. J Dermatol Treat. 2017 Dec;28(8):766–773.

  48. Li W, Yu Q, Shen Z, et al. Effects of a cream containing madecassoside, 5% panthenol, and copper-zinc-manganese on improving post-laser resurfacing wound healing: A split-face, randomized trial. Dermatol Ther. 2020 Jul;33(4):e13533.

  49. Bhatia A, Hsu J, Schlessinger T, Weiss R. Optimizing wound healing for cosmetic and medical dermatologic procedures. Practical Dermatol. 2018 Mar:42-5.

  50. Morales-Burgos A, Loosemore MP, Goldberg LH. Postoperative wound care after dermatologic procedures: a comparison of 2 commonly used petrolatum-based ointments. J Drugs Dermatol. 2013 Feb; 12(2):163-164.

  51. Trookman NS, Rizer RL, Weber T. Treatment of minor wounds from dermatologic procedures: a comparison of three topical wound care ointments using a laser wound model. J Am Acad Dermatol. 2011 Mar;64(Suppl 3):S8-S15.

  52. Levender MM, Davis SA, Kwatra SG, et al. Use of topical antibiotics as prophylaxis in clean dermatologic procedures. J Am Acad Dermatol. 2012 Mar;66(3):445-451.

  53. Jiang Q, Chen J, Tian F, Liu Z. Silicone gel sheeting for treating hypertrophic scars (review). Cochrane Database of Systematic Reviews. 2021 Sept;(9).

  54. Kammerlander G, Eberlein T, Lantin A, et al. Wet-to-dry phase 2.0. Wound Med. 2013 Jul;1:15-15.

  55. Gupta A. Classification of wounds and the physiology of wound healing. In: Kumar P, Kothari V, (eds). Wound healing research. Singapore: Springer; 2021 Jul. 3-53.

  56. Obagi Z, Damiani G, Grada A, Falanga V. Principles of wound dressings: a review. Surg Technol Int. 2019 Nov;35:50–57.

  57. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019 Jan;99(1):665–706.

  58. Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol. 2016 Apr;74(4):607–625.

  59. Jourdan M, Madfes DC, Lima E, et al. Skin care management for medical and aesthetic procedures to prevent scarring. Clin Cosmet Investig Dermatol. 2019 Oct;(12):799-804.


]]>
Understanding Psoriasis: Insights from Les Journées Dermatologiques de Paris https://www.skintherapyletter.com/psoriasis/les-journees-dermatologiques-de-paris/ Wed, 15 Mar 2023 18:15:34 +0000 https://www.skintherapyletter.com/?p=14141 Joël Claveau, MD, FRCPC, DABD1; Simon Claveau, MD, BPht2; Julien Ringuet, MD, MSc, FRCPC3

1Clinical Professor, Laval University, Quebec University Hospital Center, Hotel-Dieu of Quebec, Quebec, QC, Canada
2Dermatology resident, McGill University, Montreal, QC, Canada
3Medical Director and Principal Investigator, Dermatological Research Center of Metropolitan Quebec (CRDQ), Quebec, QC, Canada

Abstract

Drs. Joël Claveau & Julien Ringuet, two Canadian dermatologists with prominent clinical and research practices, attended the Les Journées Dermatologiques de Paris conference in Nov-Dec 2022, with a focus on presentations and posters about psoriasis. This article reviews key insights they obtained at the meeting. In brief:

  • Psoriasis has a profound and multifaceted impact, but remains undertreated
  • Progression to psoriatic arthritis is common; dermatologists can facilitate earlier detection
  • The presence of comorbidities may inform the choice of biologic treatment
  • New topical and systemic options enable treatment optimization for various subgroups
  • Adverse effects of cancer immunotherapy include psoriasis, which requires treatment

PDF download available in English French


 

Psoriasis is a chronic inflammatory skin disease that affects an estimated 2% of people worldwide, with higher rates in Caucasian than Asian populations.1 Plaque psoriasis is by far the most common form of the disease, accounting for about 90% of cases.1 A relapsing condition with a wide range of severity, psoriasis often requires long-term therapy.1

High Impact & Complex Comorbidities

The impact of psoriasis extends across all dimensions of life. The skin manifestations alone, which typically include thick, scaly and sometimes pruritic plaques, can significantly impact psychosocial well-being. Research has found that about 80% of patients feel embarrassment and shame, while 75% see themselves as unattractive and sexually undesirable.2 A 2020 French study found that psoriasis also affected the quality of life and sexuality of patients’ life partners.3 In patients who develop psoriatic arthritis, inflamed joints, pain and fatigue can significantly impair mobility and occupational functioning.2

Now recognized as an immune-mediated inflammatory disorder, psoriasis extends to several other body systems.1 Characteristic comorbidities are listed in Table 1.

Table 1: Comorbidities associated with psoriasis4,5

Related to systemic inflammation Related to lifestyle or quality-of-life factors Genetically related

Psoriatic arthritis

Metabolic syndrome/obesity

Cardiovascular disease

Non-alcoholic fatty liver disease

Anxiety

Depression

Smoking & alcohol abuse

Suicidal ideation

Inflammatory bowel disease (IBD)

* risk of IBD 4x greater than in the general population

Psoriatic arthritis, the most prevalent comorbidity of psoriasis, develops in about 30% of patients and appears about 10 years after the onset of psoriasis, on average.6 A heterogeneous disease, psoriatic arthritis may affect a few or many hand and foot joints (peripheral disease) and/or may involve the spine and sacroiliac joints (axial disease). Depending on how it is defined, axial involvement occurs in 25% to 70% of people with psoriatic arthritis.7

Presenters at the meeting emphasized that psoriatic arthritis develops along a “pathological continuum” that is often undetected. Indeed, about 15% of psoriasis patients followed by dermatologists have undiagnosed psoriatic arthritis.4 Dermatologists are in a unique position to identify early psoriatic arthritis. They should question their psoriasis patients about joint pain, stiffness, and search for signs of dactylitis and enthesitis. They could also consider referring patients for imaging and rheumatologic evaluation when deemed appropriate.6,8

Treatment Trends & Unmet Needs

New advances in psoriasis treatment have raised the expectations and goals of treatment. Ninety-percent improvement in the Psoriasis Area Severity Index (PASI 90), or even PASI 100, has become a realistic treatment goal.9 The focus has also shifted toward absolute outcomes (e.g. PGA clear or almost clear).9 Efficacious treatments improve not only psoriasis symptoms, but also quality of life.2 Treatment should be initiated early, especially when psoriatic arthritis is involved, to prevent disabling joint damage.8

Current medical treatment classes include topical agents (e.g. corticosteroids, vitamin A and D derivatives), traditional systemic agents (e.g. methotrexate, cyclosporine, acitretin), the oral phosphodiesterase-4 (PDE-4) inhibitor apremilast, and an expanding array of biologic agents (Table 2), sometimes recommended as first-line agents for moderate-to-severe plaque psoriasis.10 Historically, phototherapy (UVB and PUVA) was widely used to treat moderate to severe psoriasis, and narrow-band UVB phototherapy continues to be a good option for some patients.10

Table 2: Biologic agents used to treat psoriasis11,12

TNF inhibitors IL-12/23 inhibitors IL-17 inhibitors IL-23 inhibitors

Etanercept

Infliximab

Adalimumab

Certolizumab

Ustekinumab

Secukinumab

Ixekizumab

Brodalumab

Bimekizumab

Guselkumab

Tildrakizumab

Risankizumab

TNF = tumor necrosis factor; IL = interleukin

Several presentations at the meeting focused on biologics that inhibit the IL-17 and IL-23 cytokine pathways. In patients with moderate-to-severe arthritis, high levels of these cytokines are associated with an increased risk of comorbidities.13 IL-17 and IL-23 inhibitors, which target psoriasis immunopathology and show an overall superior skin efficacy, have been gradually displacing anti-TNF agents and IL-12/23 inhibitors as first-line biologic options.9,13 A meta-analysis of 44 studies established the overall safety and tolerability of IL-17 and IL-23 inhibitors.14 Common adverse events with these classes include infections, nasopharyngitis, and headaches,14 although the causality of these effects remains uncertain.

Despite the effectiveness of current treatments, psoriasis remains undertreated. In a 2019 online survey conducted in Germany, 59% of patients who received medical care for psoriasis were only moderately or less satisfied with their treatment.15 In the US, a study of registry patients found that, while most showed an “acceptable” treatment response after 6 and 12 months of systemic therapy, fewer than half reached their treatment targets.16 Clinicians are advised to optimize treatment in such patients. Effective strategies include increasing the dose, reducing the interval between treatments, or switching to another agent.9

Considerations in the Choice of Biologic Treatment

While both IL-17 and IL-23 are involved in the pathogenesis of psoriatic arthritis, IL-17-mediated inflammation may play a greater role in the development of axial disease and cardiometabolic comorbidities, while IL-23 may have greater involvement in the development of IBD.13 These distinctions can inform the choice between the two classes (Table 3).

Table 3: Choosing a biologic class based on comorbid PsA or IBD8,11

Anti-TNF IL17 IL12/23 IL23
Axial PsA *
Peripheral PsA
IBD
PsA = psoriatic arthritis
= effective
= not effective
* Negative studies for ankylosing spondylitis suggest that IL-23 inhibition is also ineffective for axial PSA; ongoing studies will answer the question more definitively.

Axial psoriatic arthritis: If patients require biologic therapy, anti-TNF agents are often used first-line, but IL-17 inhibitors are preferred if skin involvement is significant.7 In the MAXIMIZE study, over 60% of patients receiving the IL-17 inhibitor secukinumab showed an ASAS20 response at week 12, compared to 31% in the placebo group, and response was maintained through week 52.7 Drugs targeting the IL-12/23 pathway are not currently recommended due to a lack of studies showing clear efficacy7 as well as negative studies for ankylosing spondylitis.

Peripheral psoriatic arthritis: Evidence exists for all classes of biologics used to treat psoriasis, as well as for the PDE-4 inhibitor apremilast.8 The JAK inhibitors tofacitinib and upadacitinib have also shown efficacy and are approved for this indication.

Inflammatory bowel disease: For psoriasis with comorbid IBD, positive data exist for the use of anti-TNF inhibitors, the IL-12/23 inhibitor ustekinumab, and IL-23 inhibitors.11 Of note, Health Canada approved the IL-23 inhibitor risankizumab for Crohn’s disease in late 2022. On the other hand, the IL-17 inhibitors secukinumab and brodalumab have failed studies in Crohn’s disease.11 Cases of new-onset IBD have been observed in psoriasis patients treated with IL-17 inhibitors, though the signal is low and these cases may arise from the disease process itself, rather than as an outcome of IL-17 inhibition.11

Speed of onset of action has become an important differentiator among systemic treatments, as patients place high value on rapid clearance.9 Dosing regimen also comes into play, with many patients showing a preference for less frequent administration.

Oral candidiasis, a rare side effect related to the mechanism of action of IL-17 inhibition, generally responds to treatment and is not a reason for discontinuing the biologic.11 Reported cases of suicidality with brodalumab have led to further investigations; to date, a causal relationship has not been established.11

New Molecules

Several new practice-changing molecules were introduced at the meeting. Topical tapinarof, a hydrocarbon receptor-modulating agent, has been investigated for both psoriasis and atopic dermatitis and is expected to enter the Canadian market soon. In two Phase 3 PSOARING trials, a Physician Global Assessment (PGA) response occurred at week 12 in 35.4% and 40.2% of patients treated with tapinarof, respectively, compared to 6.0% and 6.3% in the vehicle groups.17 Of note, 58% of the patients who did not achieve PGA-0 or PGA-1 at week 12 reached this outcome at week 52 in the open-label extension study.18 In patients who reached PGA-0, the median duration of remission after discontinuation of treatment was 130 days.18 A second new topical agent, a potent PDE-4 inhibitor called roflumilast, showed similar results in the DERMIS 1 and 2 trials: at week 8, 42.4% and 37.5% reached the Investigator Global Assessment (IGA) endpoint in the active treatment groups, respectively, versus 6.1% and 6.9% in the control arms.19 A distinctive feature of this agent is its efficacy and tolerability in special sites such as facial, genital and intertriginous areas.

Deucravacitinib is a new oral JAK inhibitor that specifically targets the TYK2 receptor, which differentiates it from less targeted JAK inhibitors. As shown in the Phase 3 POETYK-1 and -2 trials, the molecule is potent enough to treat moderate-to-severe psoriasis. In the trials, 53-58% of patients in the treatment arms reached the co-primary endpoint of PASI 75, compared to 35-40% in comparator apremalist arms and 9-12% in the control arms.20 Corresponding results for the other co-primary endpoint (IGA 0-1) were 50-53% for deucravacitinib, 32-34% for apremilast, and 7-8% for placebo.20 Longer-term data showed that efficacy was maintained for up to 52 weeks. These results led Health Canada to approve this agent in late 2022.

Deucravacitinib has also been investigated for psoriatic arthritis in a recently published Phase 2 study.21 Patients were randomized to receive placebo or one of two doses (6 mg and 12 mg daily) of deucravacitinib, with ACR-20 response at week 16 as the primary endpoint. Response was significantly higher with deucravacitinib 6 mg (52.9%) and 12 mg (62.7%) than with placebo (31.8%),21 suggesting this oral agent may play a role in the treatment of psoriatic arthritis. Phase 3 studies are ongoing.

A first-in-class biologic called spesolimab, which targets the IL-36 receptor, has recently been approved by the FDA for the treatment of generalized pustular psoriasis (GPP), a severe form of psoriasis that causes pustules on an erythematous base often associated with systemic symptoms. In the Phase 2 trial of patients with severe GPP, spesolimab 900mg IV demonstrated clear superiority over placebo (54% vs. 6%) for the main outcome measure of GPPGA-0.22 [GPPGA = Generalized Pustular Psoriasis Physician Global Assessment.] Serious adverse events were reported in 6% of patients on spesolimab versus 0% on placebo, and a signal of infectious risk also emerged in the spesolimab group. The ongoing Effisayil 2 trial is evaluating spesolimab as maintenance treatment for GPP.23

Cancer Immunotherapy and Psoriasis

The meeting helped raise awareness of an increasing challenge in dermatology: the management of adverse events induced by cancer immunotherapy. Immune checkpoint inhibitors (ICIs) represent a significant leap in cancer treatment, but they come at the cost of various immune-related adverse events, including dermatologic adverse events in about 40% of cases.24 In a multi-centre study of patients on ICI therapy, psoriasis accounted for 23% of skin-related side effects.25 While most ICI-induced psoriasis is the plaque subtype, all other subtypes have been reported.24 Other common dermatologic sequelae of ICI treatment include lichenoid and eczematous eruptions, pruritus, and vitiligo.


Figure 1: Checkpoint inhibitor-induced psoriasis

Understanding Psoriasis: Insights from Les Journées Dermatologiques de Paris - image

Understanding Psoriasis: Insights from Les Journées Dermatologiques de Paris - image
From Dr. Joël Claveau’s files

ICI treatment can induce psoriasis de novo or cause preexisting psoriasis to flare up.24 This can complicate treatment decisions and underscores the need for oncologists to consult dermatologists when treating patients with a history of psoriasis or psoriatic arthritis, including during flareups.

On a positive note, the presence of skin toxicities may signal that ICI treatment is working. In a population-level cohort study that reviewed a database of over 200 European and US patients treated with ICI, the development of cutaneous adverse events was strongly associated with therapeutic response and patient survival.26 If more severe ICI-induced skin toxicities are not managed, however, they may compromise the therapeutic outcome of cancer treatment.25

For moderate cases of CI-induced psoriasis, acitretin, methotrexate, and/or apremilast are deemed suitable options.24 For more severe presentations, the EADV task force “Dermatology for Cancer Patients” recommends reinforcing therapy for moderate disease (including dose optimization) and consideration of anti-TNF and IL-23-targeting biologics in non-responders.24 The paper also advises avoiding IL-17-targeting agents due to their gastrointestinal effects,24 though this is still a subject of debate. Ideally, ICI treatment should be discontinued until the psoriasis improves to grade 0 or 1.24

Overall, the management of ICI-induced dermatologic adverse events requires a balance between reducing troubling skin toxicities that compromise patients’ quality of life and preserving the benefits of cancer treatment.

Conclusions

The global medical community has come to understand psoriasis as a systemic disease with a profound impact. The optimal treatment choice depends not only on the disease subtype and severity, but on a patient’s comorbidity profile. While both systemic and topical treatments continue to improve, many patients remain undertreated. Dermatologists can play a significant role in detecting emergent psoriatic arthritis and in managing psoriasis induced by cancer treatment.


Test Your Knowledge

Question 1: Which class of biologic is not suitable for psoriasis patients with comorbid inflammatory bowel disease, and why?

Answer:


IL-17 inhibitors are currently not recommended for this group of patients. The IL17 inhibitors secukinumab and brodalumab have failed studies in Crohn’s disease, and new-onset IBD has been observed in psoriasis patients treated with IL17 inhibitors (though a causal relationship has not been established).


Question 2: If patients on cancer immunotherapy develop psoriasis, should they be switched to a different cancer treatment?

Answer:


Development of cutaneous side effects, including psoriasis, signals that the immunotherapy is likely working. The psoriasis should be treated with either local or systemic treatments, but the immunotherapy doesn’t need to be permanently discontinued or replaced with another therapy. Opportunity to claim credit for assessment activity available on MAINPORT at the Royal College of Physicians and Surgeons of Canada under section 3: Chart Audit and Feedback



 

References



  1. Rendon A, Schakel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019 Mar 23;20(6):1475.

  2. Mease PJ, Menter MA. Quality of life issues in psoriasis and psoriatic arthritis: outcome measures and therapies from a dermatologic perspective. J Am Acad Dermatol. 2006 Apr;54(4):685-704.

  3. Halioua B, Maccari F, Fougerousse AC, et al. Impact of patient psoriasis on partner quality of life, sexuality and empathy feelings: a study in 183 couples. JEADV. 2020 Sep;34(9):2044-2050.

  4. Menter A, Armstrong AW, Gordon KB, Wu JJ. Common and not-so-common comorbidities of psoriasis. Semin Cutan Med Surg. 2018 Feb;37(2S):S48-S51.

  5. Ganzetti G, Campanati A, Molinelli E, Offidani A. Psoriasis, non-alcoholic fatty liver disease, and cardiovascular disease: three different diseases on a unique background. World J Cardiol. 2016 Feb 26;8(2):120-31.

  6. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017 Mar 9;376(10):957-970.

  7. Poddubnyy D, Jadon DR, Van den Bosch F, et al. Axial involvement in psoriatic arthritis: an update for rheumatologists. Semin Arthritis Rheum. 2021 Aug;51(4):880-887.

  8. Savage L, Tinazzi I, Zabotti A, et al. Defining pre-clinical psoriatic arthritis in an integrated dermato-rheumatology environment. J Clin Med. 2020 Oct 12;9(10):3262.

  9. Nast A, Smith C, Spuls PI, et al. EuroGuiDerm guideline on the systemic treatment of psoriasis vulgaris. Part 1: treatment and monitoring recommendations. JEADV. 2020 Nov;34(11):2461-2498.

  10. Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA. 2020;323:1945-60.

  11. Nast A, Smith C, Spuls PI, et al. EuroGuiDerm guideline on the systemic treatment of psoriasis vulgaris. Part 2: specific clinical and comorbid situations. JEADV. 2021 Feb;35(2):281-317.

  12. Bimekizumab product monograph (Canada). Feb. 4, 2022. https://pdf.hres.ca/dpd_pm/00064702.PDF

  13. Menter A, Krueger GG, Paek SY, et al. Interleukin-17 and Interleukin-23: A narrative review of mechanisms of action in psoriasis and associated comorbidities. Dermatol Ther (Heidelberg). 2021 Apr;11(2):385-400.

  14. Loft ND, Vangebjerg S, Halling AS, et al. Adverse events with IL-17 and IL-23 inhibitors for psoriasis and psoriatic arthritis: a systematic review and meta-analysis of phase III studies. JEADV. 2020 Jun;34(6):1151-1160.

  15. Pilz AC, Zink A, Schielein MC, et al. Despite large choice of effective therapies, individuals with psoriasis still seem undertreated. J Dtsch Dermatol Ges. 2021 Jul;19(7):1003-1011.

  16. Merola JF, Perez Chada LM, Siegel M, et al. The National Psoriasis Foundation psoriasis treatment targets in real-world patients: prevalence and association with patient-reported outcomes in the Corrona Psoriasis Registry. JEADV. 2020 Sep;34(9):2051-2058.

  17. Lebwohl M, Stein Gold L, Strober B, et al. Phase 3 trials of tapinarof. N Engl J Med. 2021 Dec 9;385(24):2219-2229.

  18. Strober B, Stein Gold L, Bissonnette R, et al. One-year safety and efficacy of tapinarof cream for the treatment of plaque psoriasis: results from the PSOARING trial. J Am Acad Dermatol. 2022 Oct;87(4):800-806.

  19. Lebwohl M, Kircik L, Moore AY, et al. Effect of Roflumilast Cream vs Vehicle Cream on Chronic Plaque Psoriasis: The DERMIS-1 and DERMIS-2 Randomized Clinical Trials. JAMA. 2022 Sep 20;328(11):1073-1084.

  20. Strober B, Thaçi D, Sofen H, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 Program for Evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023 Jan;88(1):40-51

  21. Mease PJ, Deodhar AA, van der Heijde D, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022 Jun;81(6):815-822.

  22. Bachelez H, Choon SE, Marrakchi S, et al. Trial of spesolimab for GPP. N Engl J Med. 2021 Dec 23;385(26):2431-2440.

  23. Morita A, Choon SE, Bachelez H, et al. Design of Effisayil™ 2: a randomized, double-blind, placebo-controlled study of spesolimab in preventing flares in patients with generalized pustular psoriasis. Dermatol Ther (Heidelb). 2023 Jan;13(1):347-359.

  24. Apalla Z, Nikolaou V, Fattore D, etal. European recommendations for management of immune checkpoint inhibitors-derived dermatologic adverse events. The EADV task force ‘Dermatology for cancer patients’ position statement. J Eur Acad Dermatol Venereol. 2022 Mar;36(3):332-350.

  25. Nikolaou VA, Apalla Z, Carrera C, et al. Clinical associations and classification of immune checkpoint inhibitor-induced cutaneous toxicities: a multicentre study from the European Academy of Dermatology and Venereology Task Force of Dermatology for Cancer Patients. Br J Dermatol. 2022 Dec;187(6):962-969.

  26. Tang K, Seo J, Tiu BC, et al. Association of cutaneous immune-related adverse events with increased survival in patients treated with anti-programmed cell death 1 and anti-programmed cell death ligand 1 therapy. JAMA Dermatol. 2022 Feb 1;158(2):189-193.


]]>
Racial/Ethnic Variations in the Skin Barrier of Canadians: Implications for Skincare Recommendations Promoting a Healthy Skin Barrier and Mitigation of Atopic Dermatitis https://www.skintherapyletter.com/atopic-dermatitis/racial-ethnic-variations-skincare-recommendations/ Tue, 13 Dec 2022 23:52:57 +0000 https://www.skintherapyletter.com/?p=13954 Tan J MD FRCPC1, Alexis AF MD MPH FAAD2, Beach R MD FRCPC3, Andriessen A PhD4, Li M MD FRCPC5, Claveau J MD FRCPC DABD6, Asiniwasis R MD FRCPC7 

Affiliations


1Fellow of the Royal College of Physicians and Surgeons of Canada, Adjunct Professor, Schulich School of Medicine and Dentistry, Department of Medicine, Western University, Windsor, ON, Canada, President, Windsor Clinical Research Inc., Founder, The Healthy Image Centre, Windsor, ON, Canada.

2Professor of Clinical Dermatology, Weill Cornell Medical College, New York, NY, USA.

3Founder, DermAtelier on Avenue Medical & Cosmetic Dermatology, Assistant professor, Division of Dermatology, Department of Medicine, University of Toronto, Toronto, On, Canada.

4Radboud UMC Nijmegen, Andriessen Consultants, Malden, The Netherlands.

5Division of Dermatology, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Women’s College Hospital, Toronto, Ontario, Canada.

6Fellow of the Royal College of Physicians of Canada; Diplomate of the American Board of Dermatology; Associate Professor, Department of Medicine, Division of Dermatology, Laval University; Director Melanoma and Skin Cancer Clinic, Le Centre Hospitalier Universitaire de Québec, Hôtel-Dieu de Québec, Quebec City, QC, Canada.

7Division of Dermatology, University of Saskatchewan, Regina, SK, Canada.


Abstract

Background: Skin barrier differences and variations in the presentation of common dermatoses such as xerosis and atopic dermatitis (AD) have been reported in racial/ethnic Canadian patients. This review discusses skin barrier differences and explores the role of ceramide-containing skin care in promoting a healthy skin barrier and mitigating AD.
Methodology: A literature review and panel discussions followed by an online review were used to adopt five statements and recommendations to promote a healthy skin barrier in various racial/ethnic Canadian AD populations.
Results: The multifactorial pathogenesis of AD includes genetic and environmental factors that may vary among racial/ethnic and geographic populations. Studies comparing ethnic groups have reported variations in transepidermal water loss, skin lipid levels, and stratum corneum pH. However, these studies frequently have flaws. The panel agreed that essential skincare principles apply to all AD-affected patients regardless of racial/ethnic background.
Conclusion: Robust comparative studies are needed to help clinicians to tailor patient education and recommend routine skincare with gentle cleansers and moisturizers containing lipids for AD management regardless of disease severity and prescription treatment.

Acknowledgments: All authors participated in all the steps of the project, selection of the literature, and the review of the manuscript. All authors read and approved the final version of the manuscript.

Disclosures:
The authors disclosed receipt of an unrestricted educational grant from CeraVe Canada for support with the research of this work. The authors also received consultancy fees for their work on this project.

Keywords: Racial/ethnic skin barrier variations, skincare, atopic dermatitis

PDF Download


Background

Genetic and environmental factors influence the structure and function of the stratum corneum (SC) barrier.1 Approximately 30% of Canadians are estimated to be part of a fast-growing racial/ethnic population by 2031.2 However, morphology and descriptions of dermatoses are based on White patients and the historic assumption that most residents of Canada and the United States are of Northern European descent.2

Differences in the skin barrier properties and function and the presentation of common dermatoses such as xerosis and atopic dermatitis (AD) have been observed in subjects with richly pigmented skin compared to White subjects.1-6 Several studies have investigated SC differences between racial/ethnic skin, comparing SC properties of self-identified Black, White, and Asian skin.1 In one such study, White subjects had an intermediate barrier strength as evidenced by tape strippings, and Asians have been demonstrated to require the least number of tape strippings to disrupt the SC barrier.1 This finding indicates a weaker barrier strength and slower recovery from barrier damage in the Asian population, supporting the observation of sensitive skin seen in Asians.1

There are significant disparities in the prevalence and treatment of skin conditions across Canadian populations.2-6 The burden of AD is higher in racial/ethnic populations, and numerous barriers to treatment exist, including systemic and institutional racism, poverty, crowded housing conditions on reserves, access and cost of basic skincare regimens, and clean water access.2-4 Promoting a healthy skin barrier remains a particular challenge for Indigenous groups, who lack access to appropriate treatments and skincare.2-6

This review discusses skin barrier differences in various racial/ethnic Canadian populations and explores the role of ceramide-containing skin care in promoting a healthy skin barrier and mitigating AD.

Methods

A group of dermatologists assembled during the Dermatology Update conference on November 13, 2021, in Montreal, Quebec. The panel (advisors) [four Canadian dermatologists and one dermatologist from the US] reviewed skin barrier differences in various racial/ethnic Canadian groups exploring dermatology issues related to skin barrier integrity. Additionally, the advisors determined the relevance of skincare-containing ceramides comprising cleansers and moisturizers for these populations to promote a healthy skin barrier and mitigate AD. Finally, the advisors looked into patient and clinician education tools to promote a healthy skin barrier in various racial/ethnic Canadian populations.

The project used a modified Delphi process comprising face-to-face discussions followed by an online follow-up.7-9

Literature Review

Structured literature searches on PubMed and Google Scholar as secondary source of the English-language literature (2010 – September 2021) were conducted before the meeting on September 21 and 22, 2021. We searched for guidelines, consensus papers, clinical studies, and reviews describing skin barrier properties in various racial/ethnic Canadian populations and current best-practice in promoting a healthy skin barrier and mitigation of AD using ceramides containing non-prescription skincare cleansers and moisturizers. Excluded were papers with no original data (unless a review article was deemed relevant), or not dealing with racial/ethnic Canadian or skincare, and publication language other than English.

The Nomenclature Used for the Searches

Searches were performed for the main ethnic Canadian groups [Black, White, Asian and Indigenous populations] and ethnic regions in Canada.2-6 Indigenous is a preferred term within Canadian communities. It is an umbrella term that covers Aboriginal, Metis, and Inuit populations. The publications collected a range of demographic data, including ethnic origin. Demographic factors referred to the quantitative data relating to the study population and its composition, which allowed portions of the population to be broken down into subgroups for closer examination.2-6 Further searches included associations between these demographic factors and the biophysical nature of racial/ethnic skin, skin care practices, and AD treatment product use.

Search Terms

The searches explored present clinical guidelines, treatment options, and therapeutic approaches addressing racial/ethnic Canadian populations using the following terms:
Racial/ethnic Canadian populations AND AD prone skin, OR Black, White, Asian and Indigenous populations in Canada AND AD, OR racial/ethnic Canadians AND skin barrier physiology OR skin barrier function/dysfunction OR racial/ethnic Canadians AND depletion of stratum corneum lipids, OR racial/ethnic Canadians AND AD prevention, OR racial/ethnic Canadians AND AD treatment, OR Black, White, Asian and Indigenous populations in Canada AND mitigation of AD, OR racial/ethnic Canadian populations with AD/AD prone skin AND skincare, OR Black, White, Asian and Indigenous people in Canada AND cleansers OR moisturizers OR emollients OR ceramides OR ce¬ramide containing skincare OR racial/ethnic Canadian AD populations AND skincare efficacy OR safety OR tolerability OR skin irritation

The searches were performed by a dermatologist and a physician/scientist (reviewers). After selection, the publicatiodns were manually reviewed for additional resources.

Priority was given to studies on SC barrier function and the benefits of skincare using cleansers and moisturizers in racial/ethnic Canadian populations with AD or AD-prone skin.

The searches yielded 248 papers, and after excluding 173 articles [duplicates, poor quality, not about Canadian racial/ethnic AD populations or skincare], 75 remained, comprising 4 epidemiology, 4 quality of life (QoL) studies, 20 guidelines, consensus papers and systematic reviews, 19 reviews, 24 clinical studies, and 4 others.

Role of the Panel

The advisors used the literature review results, clinical experience, and expertise to adopt statements and recommendations. The results were integrated into the summary statements presented and discussed during the face-to-face meeting. For example, in a workshop, advisors divided into three groups to create a final set of summary statements about Canadians’ racial/ethnic differences in SC barrier structure and function and skincare for this population, working with 12 draft messages. The final five statements integrate the combined output from the workshop groups and post-meeting online reviews from individual advisors.

Results

Statement 1: The properties and conditions of the skin vary with body site and can be influenced by factors such as skin type, ethnicity, gender, or lifestyle.
Epidemiological data indicate a higher prevalence and severity of AD in racial/ethnic Canadian populations.6,10-13

A three months population survey of all children aged 2-12 years in the community in the First Nations reserve of Natuashish, Labrador, Canada, showed that of 182 examined children, 30 (16.5%) mainly (20/30) had moderate to severe AD.6 IgE levels in children with and without AD had average values at least ten-fold higher than other populations.6

A systematic review and meta-analysis extracted 21 studies [1990 to 2020] from three medical databases [Pubmed, Embase, and Web of Science] to examine the prevalence of AD, clinical manifestation, and risk factors among children and adolescents in the Arctic.10 The cumulative AD incidence was 23%, and the 1-year prevalence was 19%, with the highest incidence in Arctic Scandinavia, lower Greenland, and Russia.10 The review indicated that the risk for AD in indigenous children living in rural Arctic areas seems slightly lower.10 Although the systematic review looked at the Arctic regions and included indigenous peoples, it did not mention Canadians.

A further study [2018] showed an AD prevalence of 20.5%, with the highest prevalence recorded among grade-1 Inuit children at 25%, compared to 15.4% among mixed ethnicity and 14.3% among non-Inuit children.11 The variations in prevalence and risk factors of asthma, allergic rhinitis, and AD among the different ethnicities living in the same subarctic environment may be related to genetic, gene-environment interaction, or lifestyle factors.11

An international study of asthma and allergies using written questionnaires included 8334 adolescents aged 13 to 14 in Vancouver, Saskatoon, Winnipeg, Hamilton, and Halifax, Canada.12 Although AD was significantly more prevalent in Winnipeg (1.31; 1.01-1.69) and Vancouver (1.28; 1.04-1.58), the highest prevalence rates of allergic rhinoconjunctivitis or AD were not observed in the same regions as the highest prevalence rates of wheezing, suggesting dissimilar risk factors.12

A cross-sectional study in Europe and Canada on AD patient-reported burden of disease showed a substantial impact (pruritus, pain, loss of sleep, higher levels of anxiety and depression) which was highest in those with severe AD.13

A similar high burden of AD has been shown in studies from other countries.14-18

Statement 2: The literature suggests racial/ethnic variations in ceramide content, SC structure, and filaggrin mutations. Racial/ethnic differences in barrier structure and function have been observed between Black, White, Asian, and Indigenous populations. Differences in TEWL have also been reported, but data are conflicting, and further research is needed.

The multifactorial pathogenesis of AD includes genetic and environmental factors that may vary among racial/ethnic and geographic populations.19 Genetic and immunophenotypic differences between racial/ ethnic AD populations, such as lower rates of filaggrin gene mutations, have been described among Black populations.20-33 Studies involving small groups of East Asian and African American patients have identified differences in cytokine expression compared to European-American patients.20-33 A literature review on clinical and molecular features of AD found differences in filaggrin (FLG) loss-of-function mutations across various ethnic groups with AD.29 The authors noted that studies in European American compared to Asian American AD populations have consistently shown a higher prevalence of FLG loss-of-function mutations in up to 50% of European and 27% of Asian American patients, respectively.29,30 However, the association between FLG loss-of-function mutations and AD development in populations of African descent is unclear, and other genes may be involved in skin barrier dysfunction.30

A higher prevalence and persistence of AD has been noted in African American children and racial/ethnic disparities in health care utilization and access to therapies.22-30

However, most of the information on racial/ethnic and geographic AD population variations originates from the US and may only be partially applicable to Canadians.

Statement 3: Data on racial/ethnic differences in skin barrier structure and function are limited but suggest variations in some characteristics relevant to skincare.

A healthy skin barrier function depends on the complex interplay among SC pH, desquamation rate, and the appropriate ratio of intrinsic lipids.37-40 The lipids comprise approximately twenty percent of the volume of the healthy stratum corneum (SC) and are composed of CERs (40–50%), cholesterols (20-33%), and free fatty acids (7–13%).37-39 Further lipids include cholesterol-3-sulfate (0-7 %) and cholesteryl esters (0-20 %).37-40

The slightly acidic surface of healthy skin is required to mature and maintain the SC barrier, inhibiting the growth of pathogenic microorganisms.39 Skin acidification plays an important role in SC barrier maturation and the activation of enzymes involved in the extracellular processing of SC lipids.39 The SC pH influences barrier homeostasis, integrity and cohesion, and antimicrobial defense mechanisms.39

It is unclear why specific changes in CER composition do not seem to affect a healthy SC and why deficiency of specific CER species and alterations in fatty acid composition occur in certain skin diseases such as AD.41-45

There is some evidence that the skin barrier in Black skin contains fewer CERs and that the skin barrier in Asian skin is most vulnerable to disruption.1,19 A less cohesive skin barrier in Asian skin might help explain differences in trans-epidermal water loss in this population.1,19 The advisors suggested that studies correlating skin barrier structure to dysfunction in Asian skin (perhaps involving tape stripping) could provide insights. Skin barrier differences (lipids, less cohesive skin barrier) may contribute to ethnic differences in the prevalence of xerosis, pruritus, and AD.

Some individuals with AD may produce inadequate amounts of certain CERs.31,41-45 Many with AD or AD-prone skin exhibit baseline increases in TEWL even within their unaffected, normal-appearing skin.31,41-45 Racial and ethnic differences have been reported in the SC barrier function, including CERs content and TEWL.45

Conventional moisturizers contain occlusives, humectants, and emulsions.39 Newer classes of moisturizers designed to restore skin barrier defects include distinct ratios of lipids that resemble physiological compositions, such as CERs, cholesterol, and essential fatty acids.37-40

CER-containing moisturizers were found to benefit AD patients when used as mono, adjunctive, and maintenance treatment.19,37-39,46-52 Guidelines, algorithms, and consensus papers agreed that the use of moisturizers that contain lipids, such as CERs (or their precursors) reduces pruritus, helps control xerosis, and improve the dysfunctional skin barrier in AD patients.34-39,53

Other ingredients in moisturizers (i.e., virgin coconut oil, glycyrrhetinic acid, V. vinifera, shea butter, mineral water and hyaluronic acid) have also been recommended.54-59

A Canadian study including 47 patients with inflammatory dermatosis, applied thermal water and hyaluronic acid-containing moisturizer for 4 weeks as an adjunct to treatment and found a markedly improved skin condition.59

A systematic review of 92 randomized controlled trials on the efficacy and safety of moisturizers for AD showed that those containing a mixture of substances (urea, glycerin or glycyrrhetinic acid, ceramides) seem to have greater effectiveness than basic emollients.62

Additionally, regular moisturizer use improves pruritus frequently caused by AD.63
As the mainstay of treatment, moisturizers should be liberally applied both in AD-prone skin and AD.34-39, 53, 60-62 The moisturizer should be used at least twice daily directly after bathing and more frequently during acute flare-ups.34-39, 53 Further moisturizers must be suitable for the patient’s skin type, climate, humidity, and environmental conditions.36-39,53-55

The advisors agreed that focusing too much on minor ethnic variations in the skin barrier of AD-affected patients could interfere with essential skincare principles that apply to all skin types. Instead, concentrating on similarities while acknowledging the differences may be more helpful.

A Canadian algorithm for topical treatment of mild-to-moderate AD for adults and pediatric patients and US guidelines for topical treatment of AD include education and avoiding triggers.34,35 Routine skincare with gentle cleansers and moisturizers is considered an integral part of AD management regardless of disease severity and prescription treatment (Table 1).34-38

Table 1: Cleanser and moisturizer use

Cleansers
  • Use nonsoap cleansers (e.g., syndets, aqueous solutions), that are less allergenic, nonirritating, and fragrance-free with a pH between 4–6.
  • Soap-based cleansers should be avoided because they can cause xerosis and skin irritation.
  • Antiseptic-containing cleansers are not recommended due to the limited duration of action of antiseptics and limited clinical data regarding their effectiveness. 
  • Consider a bleach bath for specific cases such as infections.
  • After bathing, gently pad the skin with a soft towel, avoiding rubbing. Next, apply moisturizer while the skin is still moist (within 3 min).
Moisturizers
  • A moisturizer should be used at least twice daily and more frequently during acute flare-ups.
  • Consider patient tolerance and preferences for a moisturizer to enhance treatment adherence.
  • Cream-type moisturizers containing lipids are suitable, and during winter, higher lipid contents are preferred. 
  • During acute flare-ups, moisturizers should be used more frequently in conjunction with anti-inflammatory treatment and continued as maintenance therapy.

Statement 4: Skin barrier differences between racial/ethnic populations may contribute to variations in the prevalence and severity of atopic dermatitis, xerosis, and, pruritus. Environmental issues and disparities in access to care may also play a role.

Although some authors reported a direct relationship between the severity of AD and the degree of SC lipid depletion41-45, the evidence demonstrating an association between CER depletion and AD is inconclusive.19 Other factors may play a role in SC lipid depletion, and the reduced CER could be an epiphenomenon of AD.19

Epidemiological data indicate a higher prevalence and severity of AD in racial/ethnic Canadian populations; while studies do not support the assumption that skin barrier differences are a factor.26-31 It is presumed that the impact of the cold, dry climate throughout parts of Canada may play a role in skin barrier dysfunction amongst these populations at large.

Delays in diagnosis or underestimation of severity may occur in patients with richly pigmented skin due to knowledge gaps in recognizing morphologic features of AD across the spectrum of skin complexions and racial/ethnic populations.19,64-66 Patients with richly pigmented skin may present with variations in the appearance of erythema (Figure 1). AD lesions may appear reddish-brown, violaceous, gray, or hyperchromic rather than bright red (Figure 2). Perifollicular accentuation, papules, scaling, lichenification, and pigmentary changes may be more prominent (Figure 3 and Figure 4). As a consequence, patients with SOC may present with a more advanced stage of AD severely impacting their QoL.19

Racial/Ethnic Variations in the Skin Barrier of Canadians: Implications for Skincare Recommendations Promoting a Healthy Skin Barrier and Mitigation of Atopic Dermatitis - image
Figure 1: In richly pigmented skin the appearance of erythema may vary.
Photo courtesy of Dr. Rao
Racial/Ethnic Variations in the Skin Barrier of Canadians: Implications for Skincare Recommendations Promoting a Healthy Skin Barrier and Mitigation of Atopic Dermatitis - image
Figure 2: AD lesions may appear reddish-brown, violaceous, gray, or hyperchromic rather than bright red.
Photo courtesy of Dr. Rao
Racial/Ethnic Variations in the Skin Barrier of Canadians: Implications for Skincare Recommendations Promoting a Healthy Skin Barrier and Mitigation of Atopic Dermatitis - image
Figure 3: Perifollicular accentuation, papules, scaling, lichenification, and pigmentary changes may be more prominent. Photo courtesy of Dr. Rao
Racial/Ethnic Variations in the Skin Barrier of Canadians: Implications for Skincare Recommendations Promoting a Healthy Skin Barrier and Mitigation of Atopic Dermatitis - image
Figure 4: Perifollicular accentuation, papules, scaling, lichenification, and pigmentary changes may be more prominent. Photo courtesy of Dr. Rao

Canadian Indigenous children and young adults continue to face higher rates of health disparities than their non-Indigenous counterparts.2 In dermatology, this includes a high burden of AD and secondary skin infections.2,3 Environmental factors and disparities in access to care could be a particular challenge for Indigenous groups, who frequently lack access to appropriate treatments.2,3 A systematic review of the pediatric dermatology literature reported on systemic [finances, wait times, geography], sociocultural [culture beliefs and communication], and individual barriers [patient beliefs and health knowledge] to diagnosis, treatment, and maintenance approaches of AD and other skin conditions.67 The identified barriers are interesting to explore further in Canadian AD populations. However, further research is needed to obtain insight into any interventions’ impact on overcoming these barriers.

Awareness amongst AD patients and caretakers, specifically Indigenous groups, on the cause of AD, general treatment principles, available treatments and the role of moisturizers, and adherence to moisturizer regimens are inconsistent.68

Statement 5: Cultural perceptions of healthy skin impact the choice of skincare.

First Nations people have been using medicinal plants for AD treatment. Natural Indigenous medicinal discoveries [safrole, salicylic acid, and ascorbic acid derived from Sassafras albidum, genus Salix trees, and Sassafras officinale] by the Iroquoian and Algonquian-speaking Peoples of North America for AD and other dermatologic conditions are mentioned in the European literature.71 Further examples are Western red cedar’s known principal active compound, β-thujaplicin, has shown efficacy in AD.70 Another active principal compound (7-hydroxymatairesinol) of White spruce may offer benefits due to its anti-inflammatory activity.70 Plants and algae such as hazel may also have benefits; however, studies need to confirm this.71

The effect of traditional treatments and natural remedies for AD may be of interest in managing racial/ethnic Canadian AD populations.70,71 However, such AD treatments may result in adverse effects such as postinflammatory hyperpigmentation or keloid scarring at a higher rate than evidence-based treatment.19

Optimal management of AD is multipronged and includes patient education, prescription treatment, and skincare promoting a healthy skin barrier.68,72-74

Nurse practitioner or physician assistant interventions may significantly increase correct and frequent moisturizer use, reducing AD.76

The choice of skincare should be supported by evidence but is mainly a personal and individual choice.34,36-38,61,75

It is important to note that there are variations in skincare norms across diverse populations; therefore, these cultural variations when providing skincare recommendations need to be considered.19 Integrating evidence-based recommendations for skin care in a culturally competent manner that aligns with the patient’s norms/preferences is key to successful outcomes across diverse populations.2,19 More research is needed to guide culturally appropriate recommendations better.

Limitations

A detailed discussion on genetic factors of racial/ethnic Canadian AD populations is outside the scope of the review. There is an overall lack of robust studies focusing on the prevention, treatment, and maintenance of AD in racial/ethnic Canadian AD populations.

Conclusions

The multifactorial pathogenesis of AD includes genetic and environmental factors that may vary among racial/ethnic and geographic populations. Available data suggest that skincare strategies to improve AD patients’ outcomes should consider racial/ethnic differences, integrating recommendations for skin care in a culturally competent manner that aligns with the patient’s norms and preferences. Future robust comparative studies will help clinicians to tailor patient education and recommend routine skincare with gentle cleansers and moisturizers as an integral part of AD management.

 

References



  1. Muizzuddin N, Hellemans L, Van Overloop L, et al. Structural and functional differences in barrier properties of African American, Caucasian and East Asian skin. J Dermatol Sci. 2010;59(2):123-8. doi: 10.1016/j. jdermsci.2010.06.003. PubMed PMID: 20654785.

  2. Ogunyemi B, Miller-Monthrope Y. The state of ethnic dermatology in Canada. J Cutan Med Surg. 2017;21(5):464-466. Doi: 10.1177/1203475417711110

  3. Naetahe Asiniwasis R, Heck E, Amir Ali A et al. Atopic dermatitis and skin infections are a poorly documented crisis in Canada’s Indigenous pediatric population: It’s time to start the conversation. Pediatr Dermatol. 2021 Nov;38 Suppl 2:188-189. doi: 10.1111/pde.14759.

  4. Allan B, Smylie J. First Peoples, second class treatment: The role of racism in the health and well-being of Indigenous peoples in Canada. Wellesley Institute; 2015. wellesleyinstitute.com/wp-content/uploads/2015/02/Summary-First-Peoples-Second-Class-Treatment-Final.pdf

  5. Eglington T, Asiniwasis R, Pandey M et al. Saskatchewan rural communities and skin diseases: a health practitioner survey on dermatologic conditions seen in Saskatchewan’s remote indigenous communities. SK research showcase. 2020 skresearchshowcase.com/indigenous-health-research-e-poster-1/saskatchewan-rural-communities-and-skin-diseases%3A-a-health-practitioner-survey-on-dermatologic-conditions-seen-in-saskatchewan%27s-remote-indigenous-communities

  6. Forsey RGP. Prevalence of childhood eczema and food sensitization in the First Nations reserve of Natuashish, Labrador, Canada. BMC Pediatr. 2014; 14(1): 76. https://doi.org/10.1186/1471-2431-14-76

  7. Trevelyan EG, Robinson N. Delphi methodology in health research: how to do it? Eur J Integrative Med. 2015;7(4):423-428.

  8. Brouwers M, Kho ME, Browman GP, et al.; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in healthcare. Can Med Association J. 2010,182:E839-42.

  9. Smith Begolka W, Elston DM, Beutner KR. American Academy of Dermatology evidence-based guideline development process: responding to new challenges and establishing transparency. J Am Acad Dermatol. 2011 Jun;64(6):e105-12. doi: 10.1016/j.jaad.2010.10.029.

  10. Andersson AM, Halling AS, Loft N et al. Atopic dermatitis among children and adolescents in the Arctic region – a systematic review and meta-analysis. J Eur Acad Dermatol Venerol. 2021;35(8):1642-1654. Doi.org/10.1111/jdv.17276

  11. Ahmed A, Hakim A, Becker A. Evaluation of eczema, asthma, allergic rhinitis and allergies among the Grade-1 children of Iqaluit. Allergy Asthma Clin Immunol. 2018;14:9. Doi:10.1186/s13223-018-0232-2

  12. Wang HY, Pizzichini MMM, Becker AB et al. (2010). Disparate geographic prevalences of asthma, allergic rhinoconjunctivitis, and atopic eczema among adolescents in five Canadian cities. Ped Allergy Immunol. 2010;21:867–877.

  13. De Bruin-Weller M, Gadkari A, Auziere EL et al. The patient-reported disease burden in adults with atopic dermatitis: a cross-sectional study in Europe and Canada. J Eur Acad Dermatol Venerol. 2019;34(5):1026-1036.

  14. Andersen L, Nyeland ME, Nyberg, F. Higher self-reported severity of atopic dermatitis is associated with poorer self-reported Health-Related Quality of Life in France, Germany, the UK, and the USA. Br J Dermatol. 2020 May;182(5):1176-1183.

  15. Cheng CM, Hsu JW, Huang KL et al. Risk of developing major depressive disorder and anxiety disorders among adolescents and adults with atopic dermatitis: A Nationwide longitudinal study. J Affective Disorders. 2015; 178, 60–65.

  16. Chrostowska-Plak D, Reich A, Szepietowski JC. (2012). Relationship Between Ich and Psychological Status of Patients with Atopic Dermatitis. J Eur Acad Dermatol Venereol. 2012;27:239–242.

  17. Halvorsen JA, Lien L, Dalgard Fet al. Suicidal ideation, mental health problems, and social function in adolescents with eczema: A population-based study. J Invest Dermatol 2014;134(7):1847–1854.

  18. Silverberg JI. Public Health Burden and Epidemiology of Atopic Dermatitis. Dermatol Clin; 2017;35:283–289.

  19. Alexis AF, Woolery-Lloyd H, Williams K, Andriessen A, Desai S, Han G, et al. Racial/ethnic variations in skin barrier: Implications for skin care recommendations in skin of color. J Drugs Dermatol 2021;20(9):1-7. doi:10.36849/JDD.6312]

  20. Fishbein AB, Silverberg JI, Wilson EJ, Ong PY. Update on atopic dermatitis: Diagnosis, severity assessment and treatment selection. J Allergy Clin Immunol Pract. 2020;8(1):91-101. doi: 10.1016/j.jaip.2019.06.044.

  21. Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National survey of children’s health. J Invest Dermatol. 2011;131(1):67-73. Doi: 10.1038/jid.2010.251.

  22. Janumpally SR, Feldman SR, Gupta AK, Fleischer AB. In the United States, black and Asian/Pacific Islanders are more likely than whites to seek medical care for atopic dermatitis. Arch Dematol. 2002;138(5):634-7.

  23. Wan J, Oganisian A, Spieker AJ, et al. Racial/ethnic variation in use of ambulatory and emergency care for atopic dermatitis among US children. J Investig Dermatol. 2019;139(9):1906-1913. PMCID: PMC8320361

  24. Kim Y, Blomberg M, Rifs-Shiman SL, Camargo C, Gold DR, Thyssen JP, et al. Racial/ethnic differences in incidence and persistence of childhood atopic dermatitis. J Invest Dermatol. 2019;139(4):827-834. Doi: 10.1016/j. jid.2018.10.029.

  25. Bell MA, Whang KA, Thomas J, Aguh C, Kwatra SG. Racial and ethnic disparities in access to emerging and frontline therapies in common dermatological conditions: A cross-sectional study. J Natl Med Assoc. 2020;112(6):650-653.

  26. Margolis DJ, Apter AJ, Gupta J, et al. The persistence of atopic dermatitis and fillagrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130(4):912-7. PMCID: PMC3462287

  27. Leung DY. Atopic dermatitis: Age and race do matter! J Allergy Clin Immunol. 2015;136(5):1265-7. DOI: 10.1016/j.jaci.2015.09.011

  28. Sanyal RD, Pavel AB, Glickman J, Chan TC, Zheng X, Zhang N, et al. Atopic dermatitis in African American patients is TH2/TH22-skewed with TH1/TH17 attenuation. Ann Allergy Asthma Immunol. 2019 Jan;122(1):99-110.e6. doi: 10.1016/j.anai.2018.08.024. PMID: 30223113.

  29. Brunner PM, Gutterman-Yassky E. Racial differences in atopic dermatitis. Ann Allergy Asthma Immunol. 2019;122(5):449-455.

  30. Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic group-Variations in epidemiology, genetics, clinical presentation, and treatment. Experi Dermatol. 2018;27:340-357.

  31. Muizzuddin N, Hellemans L, Van Overloop L, et al. Structural and functional differences in barrier properties of African American, Caucasian and East Asian skin. J Dermatol Sci. 2010;59(2):123-8. doi: 10.1016/j. jdermsci.2010.06.003.

  32. Wu, K.K., Nguyen, K.B., Sandhu, J.K., & Armstrong, A.W. (2019). Does Location Matter? Geographic Variations in Healthcare Resource Use for Atopic Dermatitis in the United States. J Dermatol Treatment. DOI: 10.1080/09546634.2019.1656796

  33. Chiesa Fuxench ZC, Block J, Boguniewicz M, et al. Atopic Dermatitis in America Study: a cross-sectional study examining the prevalence and disease burden of atopic dermatitis in the US adult population. Journal of Investigative Dermatology. October 2018. doi:10.1016/j.jid.2018.08.028

  34. Lynde CW, Bergman J, Fiorillo L, et al. Clinical insights about topical treatment of mild-to-moderate pediatric and adult atopic dermatitis. J Cutan Med Surg. 2019 May/Jun;23(3_suppl):3S-13S.

  35. Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71:116–132.[PMC free article] [PubMed] [Google Scholar]

  36. van Zuuren EJ, Fedorowicz Z, Christensen R, Lavrijsen A, Arents BWM. Emollients and moisturisers for eczema. Cochrane Database Syst Rev. 2017;2:CD012119. doi:10.1002/14651858.CD012119

  37. Schachner LA, Blume-Peytavi U, Andriessen A, et al. Expert consensus on ceramides containing skincare in newborns and infants and potential mitigation of atopic dermatitis. Ital J Dermatol Venerol. 2022(1). doi:10.23736/S2784-8671.21.07172-3.

  38. Schachner LA, Andriessen A, Benjamin L, et al. A Consensus about the Importance of Ceramide containing Skincare for Normal and Sensitive Skin conditions in Neonates and Infants. J Drugs Dermatol. 2020;19(8):769-776. DOI: 10.36849/jdd.2020.5252 PMID: 32845590

  39. Lynde CW, Tan J, Skotnicki S, Andriessen A, et al. Clinical insights about the role of skin pH in inflammatory dermatological conditions. J Drugs Dermatol. 2019;18(12)S-1:1-16.

  40. t’Kindt R, Jorge L, Dumont E, et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 2012;84:403–411.

  41. Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RH. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol 2015;28:42–55.

  42. Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. Skin barrier function and atopic dermatitis. Curr Dermatol rep. 2018;7(4):209-220. doi:10.1007/s13671-018-0232-y

  43. Kim D, Lee NR, Park S-Y, et al. As in atopic dermatitis, non-lesional skin in allergic contact dermatitis displays abnormalities in barrier function and ceramide content. J Invest Dermatol. 2017;137(3):748-750. doi:10.1016/j.jid.2016.10.034

  44. Ito S, Ishikawa J, Naoe A, Yoshida H, et al. Ceramide synthase 4 is highly expressed in involved skin of patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2017;31:135–141.

  45. Strugar TL, Kuo A, et al. Connecting the dots: From skin barrier dysfunction to allergic sensitization, and the role of moisturizers in repairing the skin barrier. J Drugs Dermatol. 2019;18(6):581.

  46. Kircik LH, Del Rosso JQ. Nonsteroidal treatment of atopic dermatitis in pediatric patients with a ceramide-dominant topical emulsion formulated with an optimized ratio of physiological lipids. J Clin Aesthet Dermatol. 2011;4(12):25-31.

  47. Lynde CW, Andriessen A. A cohort study on a ceramide-containing cleanser and moisturizer used for atopic dermatitis. Cutis 2014;93(4)207-2013.

  48. Draelos ZD, Baalbaki NH, Cook S, Raab S, Colon G. The effect of a ceramide-containing product on stratum corneum lipid levels in dry legs. J Drugs Dermatol. 2020;19(4)372-376.

  49. Zeichner JA, Del Rosso JQ. Multivesicular emulsion ceramide-containing moisturizers: an evaluation of their role in the management of common skin disorders. J Clin Aesthet Dermatol. 2016;9(12):26-32. PMID: 28210396 | PMCID: PMC5300724

  50. Lueangarun S, Tragulplaingam P, Sugkraroek S. The 24-hr, 28-day, and 7-day post-moisturizing efficacy of ceramides 1, 3, 6-II containing moisturizing cream on skin dryness and barrier disruption in senile xerosis treatment. Dermatol Ther. 2019;32(6)e13090. https://doi.org/10.1111/dth.13090.

  51. Danby SG, Andrew PV, Cork MJ et al. An investigation of the skin barrier restoring effects of a cream containing ceramides in a multivesicular emulsion in people with dry, eczema-prone, skin: The RESTORE study phase I. Dermatol Ther (Heidelb) 2020;(6) https://doi.org/10.1007/s13555-020-00426-3

  52. Danby SG, Andrew PV, Cork MJ et al. An investigation of the skin barrier restoring effects of a cream containing ceramides in a multivesicular emulsion in people with dry, eczema-prone, skin: The RESTORE study phase 2. J Am Acad Dermatol. 2020;83(6) Suppl, AB71; December 1, 2020. DOI: https://doi.org/10.1016/j.jaad.2020.06.373

  53. Del Rosso JQ, Harper J, Kircik L, et al. Consensus Recommendations on Adjunctive Topical Management of Atopic Dermatitis. J Drugs Dermatol. 2018;17:1070-1076.

  54. Rubel D, Thirumoorthy T, Soebaryo RW, Asia-Pacific Consensus Group for Atopic Dermatitis et al. Consensus guidelines for the management of atopic dermatitis: an Asia-Pacific perspective. J Dermatol. 2013;40:160–171.

  55. Chow S, Seow CS, Dizon MV, et al. Asian Academy of Dermatology and Venereology. A clinician’s reference guide for the management of atopic dermatitis in Asians. Asia Pac Allergy. 2018;8:e41.

  56. Comite Nacional de Dermatologia Atopic dermatitis: National consensus 2013. Arch Argent Pediatr. 2014;112:293–294.

  57. Wollenberg A, Barbarot S, Bieber T, European Dermatology Forum (EDF) The European Academy of Dermatology and Venereology (EADV) The European Academy of Allergy and Clinical Immunology (EAACI) et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32:657–682.

  58. Wollenberg A, Barbarot S, Bieber T, European Dermatology Forum (EDF) The European Academy of Dermatology and Venereology (EADV) The European Academy of Allergy and Clinical Immunology (EAACI) et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018;32:820–878.

  59. Hong CH, Schachter J, Sutton AB et al. 89% Vichy mineralizing water with hyaluronic acid is a well-tolerated adjunct treatment that helps restore skin barrier function in dry skin-related inflammatory dermatoses and post-procedure skin care: A Canadian study. J Cosmetic Dermatol. 2021;(3): doi.org/10.1111/jocd.14116

  60. Mayba JN, Gooderham MJ. Review of atopic dermatitis and topical therapies. J Cutan Med Surg 2016;12: doi.org.10.1177/1203475416685077

  61. Weinstein M, Barber K, Bergman J et al. Atopic dermatitis: A practical guide to management. Eczema Society of Canada 2020 (1). https://eczemahelp.ca/wp-content/uploads/hcp-resources/ESC-Atopic-Dermatitis-A-Practical-Guide-to-Management-HCP-Guideline-2020-PUBLISHED-1.pdf

  62. Micali G, Paterno V, Cannarella R et al. Evidence-based treatment of atopic dermatitis with topical moisturizers. G Ital Dermatol Venerol. 2018;153(3):396-402.

  63. Nowak D. Diagnosis and treatment of pruritus. Can Fam Physician. 2017;63(12:918-924

  64. Pandya AG, Alexis AF, Berger TG, Wintroub BU. Increasing racial and ethnic diversity in dermatology: A call to action. J Am Acad Dermatol. 2016 Mar;74(3):584–7.

  65. Lu JD, Tiwana S, Das P, Siddiqi J, Khosa F. Gender and racial underrepresentation in academic dermatology positions in the United States: a retrospective, cross-sectional study from 2007 to 2018. J Am Acad Dermatol. 2020 Nov;83(5):1513–6

  66. Onasanya J, Liu C. Dermatology education in skin of color: where we are and where we go. Can Med Educ J. 2021;12(6):124-125.

  67. Toy J, Gregory A, Rehmus W. Barriers to healthcare access in pediatric dermatology: A systematic review. Ped Dermatol. 2021;38(2):13-19

  68. Ansiniwasis R, Sajic D, Skotnicki S. Atopic dermatitis: The skin barrier and the role of ceramides. Skin Therapy Letter. 2011;7(5)

  69. Colantonio S, Rivers JK. Botanicals with dermatologic properties derived from First Nations healing: Part 1-trees. J Cutan Med Surg 2017;(2): doi.org/10.1177/1203475417690306

  70. Colantonio S, Rivers JK. Botanicals with dermatologic properties derived from First Nations healing: Part 2-Plants and Algae. J Cutan Med Surg. 2016;(12): doi.org/10.1177/1203475416683390

  71. Perlmuttler J, Cogan R, Wisman MC. Treatment of atopic dermatitis, dermatophytes, and syphilis by Indigenous peoples prior to 1850. J Cutan Med Surg. 2021;(11): doi.org/10.1177/12034754211058403.

  72. Howe W. Treatment of atopic dermatitis. UpToDate 2022(6) https://www.uptodate.com/contents/treatment-of-atopic-dermatitis-eczema

  73. Thomas R, Landells I, Lynde C. Canadian consensus on skin barrier repair therapy in atopic dermatitis. J Cutan Med Surg 2012 doi.org/10.2310/7750.2012.S1PEDIA

  74. Pohar R, McCormack S. Emollient Treatments for Atopic Dermatitis: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines. CADTH Rapid Response Report. Can Agency Drugs Technologies Health 2019 (1) ncbi.nlm.nih.gov/books/NBK544513.

  75. Noreen Heer N, Rippke F, Weber TM, Hebert AA. Daily moisturization fora topic dermatitis: Importance, recommendations, and moisturizer choices. J Nurse Pract. 2021;17(8):920-925.

  76. Lynde CW, Bergman J, Fiorillo L, et al. Clinical insights about topical treatment of mild-to-moderate pediatric and adult atopic dermatitis. J Cutan Med Surg. 2019 May/Jun;23(3_suppl):3S-13S.


]]>
Casmo Algorithm for Management of Hormonal Therapy-Related Cutaneous Adverse Effects in Oncology Patients https://www.skintherapyletter.com/skin-cancer/casmo-algorithm-for-management-of-hormonal-therapy-related-cutaneous-adverse-effects-in-oncology-patients/ Fri, 18 Nov 2022 01:01:23 +0000 https://www.skintherapyletter.com/?p=13823 Joel Claveau MD, FRCPC, DABD;1 Maxwell B Sauder MD, FRCPC, DABD;2 Anneke Andriessen PhD;3 Marcus Butler MD;4 Charles W Lynde MD, FRCPC;5 Tarek Hijal MD, FRCPC6

Affiliations



  1. Fellow of the Royal College of Physicians of Canada; Diplomate of the American Board of Dermatology; Associate Professor, Department of Medicine, Division of Dermatology, Laval University; Director Melanoma and Skin Clinic, Le Centre Hospitalier Universitaire de Québec, Hôtel-Dieu de Québec, Quebec City, QC, Canada.

  2. Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Associate Professor, Department of Medicine University of Toronto; Onco-dermatologist, Princess Margaret Cancer Centre, Director, Toronto, ON, Canada.

  3. Radboud UMC; Nijmegen and Andriessen Consultants, Malden, The Netherlands.

  4. Medical Oncologist, Medical Oncology Disease Site Lead for Melanoma/Skin Oncology, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre; Assistant Professor, Department of Medicine, University of Toronto; Associate Member, Department of Immunology, University of Toronto, Toronto, ON, Canada.

  5. Diplomate, American Board of Dermatology; Fellow, Royal College of Physicians and Surgeons of Canada; Associate Professor, Department of Medicine University of Toronto, Toronto, ON, Canada; Lynderm Research, Markham, ON, Canada.

  6. Associate Professor, Department of Oncology, McGill University; Director, Division of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada.


Abstract

Introduction: Breast and prostate cancer patients frequently use hormonal therapy to improve treatment outcomes and survival. However, these medications can be associated with numerous dermatologic adverse effects. If not appropriately managed, these cutaneous reactions can reduce the quality of life and interfere with treatment adherence.
Objectives: The Canadian skin management in oncology (CaSMO) algorithm was developed to improve the quality of life for cancer patients and survivors who experience hormonal therapy-related dermatologic toxicities.
Methods: The CaSMO advisory board created a practical algorithm for preventing and treating hormonal therapy-related cutaneous adverse effects based on the results of a literature search and their clinical expertise.
Results: Skin toxicities related to hormonal therapy include symptoms of menopause/andropause, androgenic alopecia, rosacea, hirsutism, and other eruptions. The algorithm provides practical steps for preventing and treating these cutaneous conditions.
Conclusions: The CaSMO algorithm provides information for all healthcare providers who treat oncology patients receiving hormonal therapy and can be used to help prevent and manage common dermatologic toxicities, thereby improving patient adherence, quality of life, and treatment outcomes.

Acknowledgments and Disclosure: None

Keywords: Hormonal cancer therapy, cutaneous adverse events, algorithm for hormonal therapy-related cutaneous adverse events

PDF Download


Introduction

An estimated 229,200 Canadians were diagnosed with cancer1 in 2021. Excluding non-melanoma skin cancer, the most commonly diagnosed types are lung, breast, colorectal, and prostate, making up almost half of all new cancer diagnoses in Canada. Advances in treatment have contributed to a reduction in breast and prostate cancer mortality over the past couple of decades. The five-year survival rate for both cancer types is around 90%. However, with a growing number of survivors, providers should be aware of the potential health effects these patients may experience. It is imperative to be familiar with the adverse effects of hormonal therapies, typically used long-term by many breast and prostate cancer patients. These treatments have been associated with numerous skin toxicities, usually not life-threatening but can reduce the quality of life, limit treatment adherence, and potentially affect health outcomes.

Scope of the Canadian Skin Management in Oncology Project

The CaSMO project was developed to improve the quality of life for cancer patients and survivors by offering tools to prevent and manage cutaneous adverse effects (cAEs).2-4 A general management algorithm to reduce the incidence of all cutaneous toxicities and maintain healthy skin using general measures and over-the-counter agents3 and an algorithm to reduce and treat acute radiation dermatitis4 were previously published. These algorithms aim to support all health care providers (HCPs) treating oncology patients, including physicians, nurses, pharmacists, and advanced providers.3,4 The algorithms were followed by a practical primer on prevention, identification, and treatment, including skin care for cutaneous immune-related adverse effects (AEs), focusing on isolated pruritus, psoriasiform eruptions, lichenoid eruptions, eczematous eruptions, and bullous pemphigoid. The next step in the project was to develop an algorithm for cAEs in oncology patients receiving hormonal therapy.

Methods

The advisors convened for a meeting to develop the CaSMO hormonal therapy-related cAEs algorithm. The advisors used a modified Delphi approach following the AGREE II instrument.5-7

Literature Review

The literature review included guidelines, consensus papers, and publications on the prevention and management of hormonal therapy-related cAEs published in English from January 2010 to January 2022. A dermatologist and physician/scientist conducted searches on PubMed and Google Scholar for English-language literature on January 25 and 26, 2022, using the following AND OR search terms:
Hormonal therapy; Hormonal therapy-related cAEs AND oral prescription medications OR topical regimes OR skincare, for prevention OR treatment OR maintenance; Hormonal therapy-related cAEs AND adjunctive skincare use, OR education of staff and patients, OR communication strategies, OR adherence, OR concordance, OR efficacy, OR safety, OR tolerability, OR skin irritation

Two reviewers independently evaluated the results of the literature search. Of the one hundred and ninety-one papers identified in the search, sixty-six were excluded for duplication or poor quality. The remaining one hundred and twenty-five publications included ninety-nine papers on hormonal therapy, six guidelines that included hormonal therapy, and twenty papers that discussed hormonal therapy-related cAEs, treatment, and skin care.

Hormonal Therapy

Breast cancer and prostate cancer are the most diagnosed cancers in females and males. In Canada, breast cancer accounts for 25.0% of all new cancer cases in females, and prostate cancer accounts for 20.3% of all new cancer cases in males.1 Hormonal therapy is often given as adjuvant treatment for these cancer types to reduce levels of hormones that can fuel the growth of cancer cells.8,9 These medications are used for extended periods, and adherence is threatened by AEs and their effect on patient quality of life.10

Approximately two out of three patients with breast cancer have hormone receptor-positive disease8 and will receive hormonal therapy for five to ten years to decrease the risk of disease recurrence and improve survival (Table 1).11 Hormonal treatment for breast cancer consists of aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders (SERDs), and high-dose hormones. Prostate cancer cells need androgens to grow, and hormonal therapies decrease androgen levels by interfering with androgen production or blocking androgen actions.9 Hormonal treatment for patients with prostate cancer includes luteinizing hormone-releasing hormone (LHRH) agonists, LHRH antagonists, androgen receptor blockers, and androgen synthesis inhibitors.9,12

Table 1. Hormonal Therapies and Associated Cutaneous Adverse Effects

Drug class Drug name Oncologic indication Cutaneous adverse events
Aromatase inhibitors   Anastrozole, exemestane, letrozole   Breast Vulvovaginal atrophy, hot flashes/flushing, alopecia
SERMs   Tamoxifen, raloxifene, toremifene   Breast Hot flashes/flushing, alopecia, vulvovaginal atrophy
SERDs Fulvestrant Breast Hot flashes/flushing
High-dose hormones   Ethinyl estradiol, fluoxymesterone, megestrol acetate Breast Hot flashes/flushing
Androgen receptor blockers Bicalutamide, flutamide, nilutamide, enzalutamide, apalutamide, darolutamide Prostate Hot flashes/flushing
LHRH agonists Goserelin, histrelin, leuprolide, triptorelin Prostate Hot flashes/flushing
LHRH antagonists Degarelix, relugolix Prostate Hot flashes/flushing
Androgen synthesis inhibitors Abiraterone, ketoconazole, aminoglutethimide Prostate Pruritus, rashes

Table 1: Hormonal Therapies and Associated Cutaneous Adverse Effects8-10,12,13
Details on the cancer drug, oncological indication, and cAEs.

LHRH, luteinizing hormone-releasing hormone; SERDs, selective estrogen receptor degraders; SERMs, selective estrogen receptor modulators.

Type of Skin Reactions Associated with Hormonal Therapy

Hormonal therapies for breast and prostate cancer are associated with numerous dermatologic effects involving the skin, hair, and mucosal surfaces.13 Due to the decrease in estrogen or androgen levels, they can induce menopause or andropause, respectively, leading to various general and skin-specific symptoms. Flushing, reversible alopecia, and vulvovaginal atrophy are experienced by many patients taking SERMs and AIs. In general, tamoxifen causes more frequent and severe hot flashes and higher alopecia rates than AIs. Conversely, vulvovaginal atrophy is more common in patients receiving AI therapy.13,14 In addition to symptoms of menopause/andropause, these medications can also cause androgenic alopecia, exacerbation of rosacea, hirsutism, and rashes.

The most common dermatologic AEs with androgen deprivation therapy (ADT) for prostate cancer are hot flashes, pruritus, and rash.9 Generally, men do not typically visit their doctor concerning skin issues associated with hormonal therapy. Instead, they are more likely to present with complaints of hot flashes, sweating, and changes to libido.

Patient and Caregiver Education

Most skin reactions associated with hormonal therapy for breast and prostate cancer are not life-threatening; therefore, providers may view them as minor or cosmetic issues.15 However, cAEs associated with these medications can profoundly affect the quality of life and are often not anticipated by patients. Almost 70% of patients who experienced cAEs reported that their reactions significantly limited their daily activities.16 Additionally, most patients reported that cAEs were worse than expected before starting therapy.17 As a result, these toxicities can threaten treatment adherence. Pretherapy counseling is critical to identify risk factors for skin toxicities, educate patients about potential cAEs, and identify helpful interventions that can enhance adherence.10

All HCPs who treat oncology patients receiving hormonal therapy should be involved in managing skin toxicities. Ideally, the oncology team should provide pretherapy counseling to all patients, so they are aware of potential dermatologic toxicities, know what symptoms they should report, and are familiar with preventive strategies. In addition, they can advise patients about which products to use or avoid, provide key messages about skincare, and potentially distribute skincare starter kits. When skin concerns arise, patients are likely to contact their family doctor, and they should be prepared to discuss preventive measures, offer treatment recommendations, assess the severity of cAEs, and refer severe cases to a specialist. Finally, dermatologists will see patients with more severe reactions and should be familiar with possible skin toxicities in patients receiving hormonal therapies and recommended treatment options.

Quality-of-life studies indicate that women are affected by dermatologic toxicities more than men.13 Ferreira and colleagues noted the potential impact of cAEs, stating, “These toxicities can affect a woman’s self-image, cultural identity, femininity, sexuality, and mental health.”13 Although women are more likely than men to contact their doctor with skin complaints, educating all patients on ways to prevent and treat skin toxicities associated with hormonal therapy is important. In addition, because they have less experience with skincare and are less likely to present with skin complaints, it is imperative to develop messages and visuals targeted explicitly to men receiving hormonal therapy for prostate cancer.

Algorithm on the Management of Hormonal Therapy-Related Cutaneous Adverse Effects

The algorithm aims to improve patient comfort during and after treatment, reduce the incidence of skin toxicities, and treat cAEs using prescription medication and skin care. After a systematic search for relevant publications, a dermatologist and a physician/scientist reviewed the literature and created a draft algorithm. Next, the advisors met to workshop the draft algorithm, incorporating their collective feedback and reaching a consensus through blinded votes. The final algorithm provides a high-level overview of the management of skin reactions associated with hormonal therapy (Figure 1).

Casmo Algorithm for Management of Hormonal Therapy-Related Cutaneous Adverse Effects in Oncology Patients - image
Figure 1: CaSMO algorithm for management of hormonal therapy-related cAEs

The algorithm highlights the importance of educating patients before initiating hormonal therapy on the type of medication they will receive, its mechanism of action, and potential cAEs associated with the treatment. Additionally, the algorithm emphasizes the value of preventive skin care throughout hormonal cancer treatment (Table 2). This daily skin care regimen should include the use of gentle cleansers, moisturizers, and sun protection by all patients. Practitioners should continue to educate and assess patients for skin toxicities throughout treatment to improve adherence to therapy.

Table 2. General Skin Care Recommendations

Products/ingredients to use Products/ingredients to avoid
Mild cleanser Abrasive ingredients
Fragrance-free Fragrances
Cleanser that is mildly acidic to neutral pH (4-6.5) Alkaline cleanser
Broad-spectrum sunscreen with SPF of 30 or higher  
Moisturizers with emollients or occlusives  
Table 2: General skin care recommendations35

Menopause/Andropause Symptoms

Hormonal therapies can induce menopause or andropause by interfering with hormone production or blocking hormone action. Patients receiving these treatments may present with general symptoms, including hot flashes, flushing, sleep disturbances, and hyperhidrosis. Additionally, they may experience skin-specific symptoms such as vulvovaginal atrophy, facial atrophy, and xerosis (Table 3).

Table 3. Treatments for Menopause/Andropause Symptoms

Symptom Drug class Treatment Common dosage Notes
Hot flashes SNRI Venlafaxine 37.5-150 mg/day Frequently used in clinical practice; best-studied agent in men
SSRI Desvenlafaxine 100-150 mg/day  
Paroxetine   7.5-25 mg/day Approved for hot flashes; not for patients receiving tamoxifen due to potent CYP2D6 inhibition
Citalopram 10-20 mg/day Preferred
Escitalopram 10-20 mg/day Preferred
Fluoxetine 10-30 mg/day Potent CYP2D6 inhibitor; avoid use with tamoxifen
Sertraline 25-100 mg/day Moderate CYP2D6 inhibitor
Anticonvulsant Gabapentin 300-900 mg/day Can cause drowsiness, best-studied agent in men
Pregabalin 150-300 mg/day Less studied than gabapentin
Anticholinergic Oxybutynin 2.5 mg BID  
Antihypertensive Clonidine 0.1 mg/day Clinical use is poor due to significant AEs; transdermal patch preferred over oral tablets.
Sleep disturbances Anticonvulsant Gabapentin 100 mg to 1200 mg single dose/ bedtime May help with sleep
Supplement Melatonin Not specified No studies on patients with cancer
Hyperhidrosis Astringent Aluminum chloride 20% topical solution First-line treatment for all patients
Neurotoxin OnabotulinumtoxinA Intradermally into affected areas Use when patients fail aluminum chloride or in severe cases
Iontophoresis   First-line option for plantar or palmer hyperhidrosis
Anticholinergic Topical glycopyrrolate 2% First-line option for facial hyperhidrosis
Anticholinergic Oxybutynin 2.5%/day or BID Second-line option
Anticholinergic Oral glycopyrrolate 2mg /BID Second-line option
Vaginal atrophy Hormone-free moisturizers Water-based gel, HA gel - Used routinely to improve moisture and pH
Lubricant Hormone-free vaginal lubricant - Used as needed before intercourse
Topical hormone products Low-dose estrogen rings, creams - May be considered for severe symptoms after consultation  with the oncologist
Facial atrophy Sun protection Broad-spectrum sunscreen, SPF 30 or higher - Protects skin, reduces further thinning, prevents new wrinkles
Moisturizer Moisturizer containing HA or glycerin - Helps reducing xerosis
  Retinol - Increases collagen
Xerosis Moisturizer Moisturizer containing HA or glycerin - Helps reducing xerosis

Table 3: Treatments for Menopause/Andropause Symptoms13,14,18,21-23,26,29
Details on cancer treatment, cAEs (Hot flashes/flushing, sleep disturbances, hyperhidrosis, vaginal atrophy, facial atrophy, and xerosis) and treatment of cAEs; *Consider other causes. Medication for androgenic alopecia: Topical minoxidil 2% to 5%/BID; spironolactone 5mg to 200mg/QD

AEs, adverse effects; SNRIs, serotonin and norepinephrine reuptake inhibitors; SSRIs, selective serotonin reuptake inhibitors; SPF, sun protection factor; BID, twice a day; HA, hyaluronic acid.

General symptoms of menopause/andropause:

Hot flashes, described as brief episodes of intense and uncomfortable heat, have been reported in 46% to 73% of breast cancer survivors.18 The feeling of overheating is often accompanied by facial flushing and blotchy erythema that spreads over the face, neck, and chest. Hot flashes typically have a quick onset and resolution and may be accompanied by sweating, palpitations, and anxiety.19,20 Occurring at night can lead to night sweats and affect sleep quality.20 Breast cancer survivors report higher rates of vasomotor symptoms than women without breast cancer, possibly due to the rapid transition to menopause during breast cancer treatment and exacerbation of estrogen deficiency caused by hormonal therapy.14 A population-based survey found that breast cancer survivors were over 5.3 times more likely to experience menopausal symptoms than women in the general population.21

All patients who will be treated with hormonal therapy should receive pretherapy counseling on lifestyle interventions and environmental modifications to prevent hot flashes and flushing. It may be helpful to wear lightweight clothing and dress in layers, use fans and other cooling aids, and avoid triggers, such as heat, stress, hot beverages, spicy food, and alcohol.13,21 Additional nonmedical approaches that may be beneficial for some patients include exercise, yoga, hypnosis, acupuncture, and cognitive behavioral therapy that teaches relaxation and paced breathing.14

Although hormone-replacement therapy is the most effective treatment for vasomotor symptoms, it is contraindicated in patients with breast cancer.22 Nonhormonal management of hot flashes in breast cancer patients and survivors consists of low-dose antidepressants, anticonvulsants, clonidine, and oxybutynin.18 Recommended antidepressants include selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), which have shown a 20% to 65% reduction in the severity and frequency of hot flashes in randomized clinical trials.23 Paroxetine is the only nonhormonal therapy approved for treating vasomotor symptoms.14,23 However, because paroxetine is a potent inhibitor of CYP2D6, its use should be avoided in patients taking tamoxifen. Instead, citalopram and escitalopram are the preferred SSRIs for patients taking tamoxifen.23 SNRI venlafaxine is widely used in clinical practice because it has been well studied and has shown effectiveness in reducing hot flashes.11,23 Venlafaxine and desvenlafaxine, another possible SNRI option, are safe to use in tamoxifen patients.23 For vasomotor symptoms, doses of SSRIs and SNRIs are typically lower than antidepressant doses, and effects can be seen as soon as two weeks after treatment initiation.18,23

Other than antidepressants, the anticonvulsant gabapentin is another first-line treatment option that has been associated with reductions in hot flash frequency and severity. As an added benefit, it may also help improve sleep quality.23 Alternatively, pregabalin may be used, although it has been studied less than gabapentin.23

Second-line agents for hot flashes include clonidine and oxybutynin. Clonidine is somewhat effective, although its use is limited by AEs such as hypotension, dizziness, xerostomia, and constipation.14,23 The dose of clonidine should be titrated to the desired effect on vasomotor symptoms and effect on blood pressure.14 Long-acting transdermal clonidine is preferred to avoid AEs associated with oral clonidine. The anticholinergic agent oxybutynin may also be used to help manage vasomotor symptoms.18 Data are limited on the safety and efficacy of phytoestrogens, botanicals, and dietary supplements in breast cancer patients and survivors, and their use is not recommended.14,18

Between 50% and 80% of men treated with ADT for prostate cancer report vasomotor symptoms.18 For most patients, hot flashes increase in frequency three months after initiating ADT therapy and persist throughout treatment.24 It is important for clinicians to talk to their prostate cancer patients about this potential AE, as it can be debilitating and lead to treatment discontinuation. In fact, between 15% and 27% of patients receiving ADT indicate that hot flashes are the AE with the most significant impact on their quality of life. Prevention and treatment of ADT-related hot flashes in men is similar to what is recommended for women. Venlafaxine and gabapentin have both been studied in males experiencing hot flashes; the other agents are used in clinical practice but have not been tested in this population.18 Hormonal treatment using megestrol acetate, depot medroxyprogesterone, or transdermal estrogen may also be considered in male patients, but the benefits of these agents should be weighed against the risk of weight gain, sexual dysfunction, cardiovascular complications, and potential progression of prostate cancer.24 Additionally, intermittent administration of ADT may be an option for some patients dealing with vasomotor symptoms.12

Sleep disturbance affects nearly 60% of patients receiving hormonal therapy for breast cancer25 and is also commonly associated with the use of ADT for prostate cancer.18 Effects on sleep may result from changes in hormone levels, hot flashes, or night sweats.25 Treating hot flashes may improve sleep quality, and gabapentin may be particularly helpful at bedtime. For patients who experience nighttime vasomotor symptoms that disrupt sleep, it is recommended to take gabapentin as a single dose one hour before bedtime to reduce hot flashes and help with sleep initiation.14 Alternatively, patients who experience vasomotor symptoms during the day and night can take gabapentin twice daily, with one dose in the morning and the second dose is taken one hour before bedtime. Melatonin may be beneficial for patients experiencing sleep disturbances, although it has not been studied explicitly in cancer patients or survivors taking hormonal therapy.22 Additionally, mind-body interventions, such as exercise, yoga, meditation, acupuncture, and cognitive behavioral therapy, may also have benefits for sleep.22,25

Patients receiving hormonal therapy for breast and prostate cancer may also experience hyperhidrosis due to decreasing estrogen and androgen levels. Additionally, the SERMs raloxifene and tamoxifen are known to cause secondary hyperhidrosis.26 Treatment recommendations depend on the severity and location of hyperhidrosis. Topical 20% aluminum chloride is recommended as first-line therapy for patients with hyperhidrosis. Intradermal administration of onabotulinumtoxinA can be used for patients who fail treatment with aluminum chloride or as first-line treatment for patients with severe symptoms; these treatments can be used in combination when patients fail monotherapy with the individual agents. Additional first-line options include iontophoresis for plantar or palmar hyperhidrosis and compounded topical 2% glycopyrrolate for craniofacial hyperhidrosis. When hyperhidrosis does not resolve using the above approaches, oral anticholinergic agents, such as oxybutynin and glycopyrrolate, may decrease sweating and disease severity.

Skin-specific symptoms of menopause/andropause:

Vulvovaginal atrophy is a common AE associated with hormonal therapy for breast cancer, with symptoms reported in up to 40% of patients taking tamoxifen and 74% of patients taking an AI.13 Hypoestrogenism results in thinner vulvar and vaginal epithelium, loss of glycogen, and increased vaginal pH.27 As a result, patients may experience dryness, burning, irritation, and itching that can lead to dyspareunia. Vulvovaginal atrophy is also associated with urinary incontinence and urinary tract infections. These changes can significantly impact patient relationships and quality of life.11,27

Mild symptoms of vulvovaginal atrophy can be treated with vaginal moisturizers and lubricants.13,22 It is important to inform patients of the difference between moisturizers used continuously to increase vaginal moisture and improve pH and lubricants used as needed before intercourse.14 Vaginal dilators and pelvic floor physical therapy may also be helpful for some patients.13 When moisturizers and lubricants are not effective, low-dose vaginal estrogen therapy may be considered after consultation with the oncologist to discuss the benefits and risks of treatment.13,14

Estrogen deficiency also affects facial skin by causing a decrease in sebum production, collagen content, dermal thickness, and elastin fibers.28 When estrogen levels decrease, women may notice dryness, decreased firmness, thinning of the skin, fine wrinkling, and poor wound healing. For skin-specific symptoms of menopause, it is important to use a broad-spectrum sunscreen with SPF 30 or higher to protect the skin and prevent new wrinkles.29 A mild cleanser and a moisturizer with hyaluronic acid or glycerin can help manage dryness. Retinoids may be recommended to increase collagen and improve wrinkles.

Androgenic Alopecia:

A meta-analysis10 including data from over 13,000 patients treated with hormonal therapy indicated that tamoxifen was the single-agent treatment associated with the highest incidence of all-grade alopecia (9.3%) and grade 2 alopecia (6.4%). Hair loss was observed in 2.2% to 2.5% of patients receiving single-agent AI therapy. The incidence of alopecia was highest for patients who received a combination of hormonal treatments. With hormonal therapies that lower estrogen levels, alopecia is thought to be caused by decreased estrogen stimulation and increased androgen stimulation of the hair follicles,15 which leads to an increase in hair loss during the telogen phase and a decrease in hair shaft diameter that leads to fragility, breakage, and subsequent hair loss.10 Androgenic alopecia typically presents as female pattern hair loss, with diffuse thinning over the scalp and the “Christmas tree pattern” along the center part.13

Most cases of alopecia associated with hormonal therapy are grade 1, which is defined as hair loss of less than 50% of normal for that individual that is not obvious from a distance.13 Alopecia associated with hormonal agents is generally reversible, but it tends to last for the duration of treatment.10,13 While HCPs may view hair loss as a temporary or cosmetic issue; alopecia can be very distressing to cancer patients and survivors.15 Even low-grade alopecia has been associated with decreased quality of life and negative emotional impact.13

Before starting hormonal therapy, providers need to discuss the risk of alopecia with patients and encourage them to report any increase in hair loss that is not normal for them.30 Although there are currently no preventive strategies for alopecia caused by endocrine therapies, it is essential that diagnosis and treatment start as soon as possible to improve prognosis. Once patients seek medical help for alopecia, the goal of treatment is to stop or reduce hair loss. Patients must be educated on their prognosis and understand that therapy focuses on maintenance, not hair regrowth.15

When a patient on hormonal therapy presents with alopecia, it is important first to rule out other causes, such as thyroid dysfunction or low iron, vitamin D, or zinc levels.10 Occasionally, scalp biopsy can be helpful to exclude early scarring alopecia or telogen effluvium, especially when patients present with alopecia that does not follow the typical androgenetic pattern.10,31 After ruling out other contributing factors, patients with mild alopecia can use topical minoxidil 2% to 5% twice daily.10 Camouflaging sprays, powders, wigs, or extensions may also help conceal low-grade hair loss. Spironolactone may be considered after discussion with the oncologist for cases refractory to topical or oral minoxidil.13,32 In abundance of caution, finasteride is not recommended for use in breast cancer patients or survivors.13 Although supplementation is recommended for patients with alopecia and low levels of vitamin D and iron, there is insufficient evidence to support the use of most other vitamin supplements. Of particular interest, the use of biotin supplements is not recommended because of a lack of supporting data and the fact that it can interfere with lab results.33

Rosacea

Rosacea, an inflammatory dermatologic condition characterized by facial flushing that persists for at least three months, is classified into several subtypes based on clinical signs and symptoms (Table 4).34

Table 4. Treatment for Rosacea

  Medication Formulation and dosage Type of rosacea Symptoms treated Adverse effects
First-line treatment Metronidazole Gel, cream, or lotion 0.75%/BID, Gel 1%/QD EPP Erythema, inflammation Mild; pruritus, irritation, dryness
Azelaic acid Gel 15%/QD or BID   EPP Erythema, inflammation Mild; include transient burning, stinging, irritation
Brimonidine Gel 0.33%/QD EPP Background erythema (reduced via vasoconstriction) Mild; irritation, burning, dry skin, pruritus, erythema
Ivermectin Cream 1%/QD PP Inflammation, antiparasitic Burning, skin irritation
Second-line treatment Sulfacetamide/ sulfur Cream 10%/5%: QD or BID PP Antibacterial Odor, transient application site reactions; avoid in patients with sulfa allergy
Benzoyl peroxide Gel 5%/ QD or BID PP Antibacterial Burning, stinging, pruritus
Erythromycin Gel 2%/ BID PP Antibiotic Pruritis, erythema, irritation, dryness
Clindamycin Gel 1%/BID PP Antibiotic Pruritus, burning, irritation, dryness
Doxycycline Oral: 100 mg/QD PP Anti-inflammatory Photosensitivity, candidal vaginitis, diarrhea

Table 4. Treatment for Rosacea35

QD, once daily; BID, twice daily; EPP, Erythematous, papulopustular; PP, Papulopustular

Patients with rosacea need to identify exacerbating factors to avoid these triggers.34 Patients should be instructed on the importance of using mild, fragrance-free, non-alkaline cleansers and moisturizers that contain emollients and occlusives. Additionally, daily use of sun protection using a broad-spectrum sunscreen with SPF 30 or higher is recommended.19,35

Treatment of rosacea varies according to the presentation. To treat erythema and inflammation, patients can use topical metronidazole, azelaic acid, ivermectin, or brimonidine.35 Additionally, vascular laser therapy can treat erythema and telangiectasias. Patients who present with papulopustular rosacea can use the above treatments alone or in combination. Anti-inflammatory doses of doxycycline can also be used as monotherapy or in combination with topical treatment. If oral therapy with low-dose doxycycline is ineffective, other options include antimicrobial doses of doxycycline, various other antibiotics, or oral isotretinoin.

Hirsutism

Hirsutism is reported in less than 10% of breast cancer survivors receiving hormonal therapy15; however, this AE is likely underreported (Table 5).30 For mild hair growth (grade 1 hirsutism), local therapies such as plucking, waxing, and electrolysis may be helpful.15,36 For prominent thick hairs that are associated with psychosocial impact (grade 2), laser therapy or pharmacologic treatment may be considered. Eflornithine (Vaniqa) topical cream can slow terminal hair growth rates on the face and under the chin.37 It is applied to affected areas of the face and chin twice daily, at least 8 hours apart, and can be combined with local hair removal methods.36,37 Spironolactone up to 200 mg per day can be considered, but this decision should be made in consultation with the oncologist due to the potential risk of hormonal stimulation in patients with hormone-positive breast cancer.36 Finasteride should not be used in breast cancer patients or survivors.13,32

Table 5. Treatment for Hirsutism

Treatment Effectiveness Notes
Local therapies Plucking, waxing, electrolysis For mild hair growth (grade 1)
Laser therapy For more severe hair growth (grade 2)
Eflornithine topical cream BID For more severe hair growth (grade 2) Can be combined with local hair removal methods
Systemic treatment Spironolactone, 50 to 200 mg/QD For more severe hair growth (grade 2) Decision should be made in consultation with oncologist

Table 5. Treatment for Hirsutism36
QD, once daily; BID, twice daily

Other Eruptions

Aside from the above cAEs that are commonly observed with hormonal therapy for breast and prostate cancer, some of the individual medications can cause other skin toxicities.

Especially, a newer androgen receptor antagonist, apalutamide has been associated with high rates of dermatologic reactions. An analysis of 303 patients with prostate cancer treated with apalutamide showed that 23.4% experienced a dermatologic AE of any grade, most commonly maculopapular rashes, and xerosis.38 In both the SPARTAN and TITAN trials, apalutamide was associated with a higher incidence of skin rash compared with placebo (23.8% vs. 5.5% for SPARTAN and 27.2% vs. 8.5% for TITAN).39 An integrated analysis of data from Japanese patients in these two studies, plus the PCR1008 study, indicated that the incidence of rash with apalutamide was nearly double in the Japanese population compared with the global population. Rash associated with apalutamide was easily managed with drug interruptions, dose reductions, and supportive medication, including oral antihistamines, topical corticosteroids, or systemic corticosteroids. The median time to resolution was one month. Treatment discontinuation was required in 14.3% of the integrated Japanese population, 9.9% of the global SPARTAN population, and 8.5% of the global TITAN population. Rash, pruritis, and xerosis can occur with AI therapy.40 There have also been rare reports of cutaneous vasculitis, erythema nodosum, subacute cutaneous lupus erythematosus, lichen sclerosus vulvae, erythema multiforme, and erythema multiform-like eruption associated with use of AIs.

While tamoxifen is generally well tolerated, it has been associated with a wide range of less frequent dermatologic AEs. Approximately 19% of patients receiving tamoxifen will experience a cAE during treatment.41 These reactions can vary from the common occurrence of flushing to the rare and serious development of Stevens-Johnson syndrome. Other potential skin toxicities that have been associated with tamoxifen include urticaria, vasculitis, hypersensitivity reactions, and subacute cutaneous lupus erythematosus. Cutaneous reactions typically occur within the first couple of weeks to months after initiating therapy, but there have been reports of delayed reactions that present years after starting tamoxifen. Treatment for cAEs includes discontinuation of tamoxifen and use of antihistamines, topical corticosteroids, or systemic corticosteroids when appropriate. Depending on the severity of the reaction, tamoxifen may be gradually restarted under close observation, or the patient may be switched to another hormonal therapy.

Combination Treatment:

The risk of dermatologic AEs is even higher when hormonal therapies are combined with other anticancer treatments.42 Targeted therapies, such as phosphoinositide 3-kinase (PI3K) inhibitors, mechanistic target of rapamycin (mTOR) inhibitors, and cyclin-dependent kinase (CDK) inhibitors, are often used in combination with hormonal therapy and can contribute to skin toxicities.

Rash is common when patients begin treatment with the PI3K inhibitor alpelisib in combination with fulvestrant. Therefore, the ESO-ESMO guidelines recommend the use of a nonsedating antihistamine for the first four weeks of therapy.22 Alpelisib labeling includes a warning for severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome, erythema multiforme, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. Alpelisib should be held when patients present with signs or symptoms of SCARs and should be permanently discontinued if SCARs are confirmed.43 Additionally, when alpelisib is added to fulvestrant, the rates of stomatitis, rash, alopecia, pruritis and xerosis are increased compared with fulvestrant plus placebo.43

mTOR inhibitors can cause paronychia and stomatitis.13 To prevent paronychia, patients should be instructed on gentle nail care, including regular trimming, avoiding manicuring, and wearing shoes that fit correctly. Topical corticosteroids can be used to treat chronic paronychia, and topical antibiotics and antiseptic washes can be used for bacterial infections. Oral or intravenous antibiotics may be necessary to treat more serious secondary infections. A steroid mouthwash containing dexamethasone can be used to prevent stomatitis.22 Treatment delays and dose reduction should be considered for stomatitis higher than grade 2. Additionally, dental steroid paste can be considered for the treatment of ulcers.

A high incidence of alopecia was seen in studies involving the CDK 4/6 inhibitors palbociclib, abemaciclib, and ribociclib.44 Other dermatologic AEs observed with CDK 4/6 inhibitors include mild rash, as well as rare cases of Stevens-Johnson syndrome.

Corticosteroid-related cAEs:

High-dose corticosteroids are frequently used in the treatment of cancer and are associated with various adverse effects, including cAEs. The use of systemic corticosteroids can cause acne, skin atrophy, impaired wound healing, and ecchymosis.45 Additionally, corticosteroids can result in hirsutism or thinning of hair.

Conclusion

Patients receiving cancer treatment and survivors live longer. They require information on risk factors of clinically significant events, preventive strategies, and treatment, which would contribute to the optimal care of patients with cancer. This algorithm aims to provide HCPs with information on various skin toxicities associated with hormonal therapies for breast and prostate cancer, including preventing and treating these AEs. With this knowledge, providers will be better equipped to manage cAEs in this population, thereby contributing to improved quality of life, treatment outcomes, and therapy adherence.

References



  1. Canadian Cancer Statistics Advisory Committee in collaboration with the Canadian Cancer Society, Statistics Canada and the Public Health Agency of Canada. Canadian Cancer Statistics 2021 [Internet]. Toronto, ON: Canadian Cancer Society; 2021 [cited 2022 May 16]. Available from: https://cdn.cancer.ca/-/media/files/research/cancer-statistics/2021-statistics/2021-pdf-en-final.pdf

  2. Sauder MB, Addona M, Andriessen A, Butler M, Claveau J, Feugas N, et al. The role of skin care in oncology patients. Skin Therapy Lett. 2020 Sep 30;S Oct(10):1-12.

  3. Sauder MB, Andriessen A, Claveau J, Hijal T, Lynde CW. Canadian skin management in oncology (CaSMO) algorithm for patients with oncology treatment-related skin toxicities. Skin Therapy Lett. 2021 Mar 15;S March 21:1-10.

  4. Hijal T, Sauder MB, Andriessen A, Claveau J, Lynde CW. Canadian Skin Management in Oncology Group (CaSMO) algorithm for the prevention and management of acute radiation dermatitis. Skin Therapy Lett. 2021 Nov 1;S Nov(11):1-13.

  5. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in healthcare. CMAJ. 2010 Dec 14;182(18):E839-842. doi:10.1503/cmaj.090449

  6. Trevelyan EG, Robinson N. Delphi methodology in health research: how to do it? Eur J Integr Med. 2015 Aug;7(4):423-428. doi:10.1016/j.eujim.2015.07.002

  7. Smith Begolka WS, Elston DM, Beutner KR. American Academy of Dermatology evidence-based guideline development process: responding to new challenges and establishing transparency. J Am Acad Dermatol. 2011 Jun;64(6):e105-e112. doi:10.1016/j.jaad.2010.10.029

  8. American Cancer Society. Hormone therapy for breast cancer [Internet]. 2021 [updated 2021 Oct 27; cited 2022 May 23] Available from: https://www.cancer.org/cancer/breast-cancer/treatment/hormone-therapy-for-breast-cancer.html

  9. National Cancer Institute. Hormone therapy for prostate cancer fact sheet. 2021 [updated 2021 Feb 22; cited 2022 May 9] Available from: https://www.cancer.gov/types/prostate/prostate-hormone-therapy-fact-sheet

  10. Saggar V, Wu S, Dickler MN, Lacouture ME. Alopecia with endocrine therapies in patients with cancer. Oncologist. 2013;18(10):1126-1134. doi:10.1634/theoncologist.2013-0193

  11. Runowicz CD, Leach CR, Henry NL, Henry KS, Mackey HT, Cowens-Alvarado RL, et al. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. J Clin Oncol. 2016 Feb 20;34(6):611-635. doi:10.1200/JCO.2015.64.3809

  12. NCCN. Clinical practice guidelines in oncology. Prostate cancer, version 4.2022. Cited 2022 May 24. Available from: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf

  13. Ferreira MN, Ramseier JY, Leventhal JS. Dermatologic conditions in women receiving systemic cancer therapy. Int J Womens Dermatol. 2019 Nov 7;5(5):285-307. doi:10.1016/j.ijwd.2019.10.003

  14. Santen RJ, Stuenkel CA, Davis SR, Pinkerton JV, Gompel A, Lumsden MA. Managing menopausal symptoms and associated clinical issues in breast cancer survivors. J Clin Endocrinol Metab. 2017 Oct 1;102(10):3647-3661. doi:10.1210/jc.2017-01138

  15. Freites-Martinez A, Shapiro J, van den Hurk C, Goldfarb S, Jimenez JJ, Rossi AM, et al. Persistent chemotherapy-induced alopecia, persistent radiotherapy-induced alopecia, and hair growth disorders related to endocrine therapy or cancer surgery. J Am Acad Dermatol. 2019 May;80(5):1199-1213. doi:10.1016/j.jaad.2018.03.056

  16. Hackbarth M, Haas N, Fotopoulou C, Lichtenegger W, Sehouli J. Chemotherapy-induced dermatological toxicity: frequencies and impact on quality of life in women’s cancers. Results of a prospective study. Support Care Cancer. 2008;16(3):267-273. doi:10.1007/s00520-007-0318-8

  17. Gandhi M, Oishi K, Zubal B, Lacouture ME. Unanticipated toxicities from anticancer therapies: survivors’ perspectives. Support Care Cancer. 2010;18(11):1461-1468. doi:10.1007/s00520-009-0769-1

  18. NCCN. Clinical practice guidelines in oncology. Survivorship, version 1.2022. Cited 2022 May 13. Available from: https://www.nccn.org/professionals/physician_gls/pdf/survivorship.pdf

  19. Sadeghian A, Rouhana H, Oswald-Stumpf B, Boh E. Etiologies and management of cutaneous flushing: nonmalignant causes. J Am Acad Dermatol. 2017 Sep;77(3):391-402. doi:10.1016/j.jaad.2016.12.031

  20. Graham-Brown R. Dermatologic problems of the menopause. Clin Dermatol. 1997 Jan-Feb;15(1):143-145. doi:10.1016/S0738-081X(96)00116-2

  21. Kligman L, Younus J. Management of hot flashes in women with breast cancer. Curr Oncol. 2010;17(1):81-86. doi:10.3747/co.v17i1.473

  22. Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro MS, André F, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020 Dec;31(12):1623-1649. doi:10.1016/j.annonc.2020.09.010

  23. Biglia N, Bounous VE, De Seta F, Lello S, Nappi RE, Paoletti AM. Nonhormonal strategies for managing menopausal symptoms in cancer survivors: an update. Ecancermedicalscience. 2019;13:909. doi:10.3332/ecancer.2019.909

  24. Mohile SG, Mustian K, Bylow K, Hall W, Dale W. Management of complications of androgen deprivation therapy in the older man. Crit Rev Oncol Hematol. 2009 Jun;70(3):235-255. doi:10.1016/j.critrevonc.2008.09.004

  25. Van Dyk K, Joffe H, Carroll JE. Sleep and endocrine therapy in breast cancer. Curr Opin Endocr Metab Res. 2021 Jun;18:165-170. doi:10.1016/j.coemr.2021.03.007

  26. McConaghy JR, Fosselman D. Hyperhidrosis: management options. Am Fam Physician. 2018;97(11):729-734.

  27. Pérez-López FR, Vieira-Baptista P, Phillips N, Cohen-Sacher B, Fialho SC, Stockdale CK. Clinical manifestations and evaluation of postmenopausal vulvovaginal atrophy. Gynecol Endocrinol. 2021 Aug;37(8):740-745. doi:10.1080/09513590.2021.1931100

  28. Rzepecki AK, Murase JE, Juran R, Fabi SG, McLellan BN. Estrogen-deficient skin: the role of topical therapy. Int J Womens Dermatol. 2019 Mar 15;5(2):85-90. doi:10.1016/j.ijwd.2019.01.001

  29. American Academy of Dermatology Association. Caring for your skin in menopause. Cited 2022 May 18. Available from: https://www.aad.org/public/everyday-care/skin-care-secrets/anti-aging/skin-care-during-menopause

  30. Freites-Martinez A, Shapiro J, Goldfarb S, Nangia J, Jimenez JJ, Paus R, et al. Hair disorders in patients with cancer. J Am Acad Dermatol. 2019 May;80(5):1179-1196. doi:10.1016/j.jaad.2018.03.055

  31. Vidal CI. Overview of alopecia: a dermatopathologist’s perspective. Mo Med. 2015 Jul-Aug;112(4):308-312.

  32. Rozner RN, Freites-Martinez A, Shapiro J, Geer EB, Goldfarb S, Lacouture ME. Safety of 5α-reductase inhibitors and spironolactone in breast cancer patients receiving endocrine therapies. Breast Cancer Res Treat. 2019;174(1):15-26. doi:10.1007/s10549-018-4996-3

  33. Almohanna HM, Ahmed AA, Tsatalis JP, Tosti A. The role of vitamins and minerals in hair loss: a review. Dermatol Ther (Heidelb). 2019 Mar9(1):51-70. doi:10.1007/s13555-018-0278-6

  34. Kupiec Banasikowska A, Bolton B. Rosacea. Medscape; 2021 [updated 2021 Jun 3; cited 2022 May 17]. Available from: https://emedicine.medscape.com/article/1071429-overview

  35. Oge’ LK, Muncie HL, Phillips-Savoy AR. Rosacea: diagnosis and treatment. Am Fam Physician. 2015;92(3):187-196.

  36. Hunter MH, Carek PJ. Evaluation and treatment of women with hirsutism. Am Fam Physician. 2003 Jun 15;67(12):2565-2572.

  37. Vaniqa. Package insert. Bristol-Myers Squibb; 2000 [cited 2022 May 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2000/21145lbl.pdf

  38. Pan A, Reingold RE, Zhao JL, Moy A, Kraehenbuehl L, Dranitsaris G, et al. Dermatological adverse events in prostate cancer patients treated with the androgen receptor inhibitor apalutamide. J Urol. 2022 May 1;207(5):1010-1019. doi:10.1097/JU.0000000000002425

  39. Uemura H, Koroki Y, Iwaki Y, Imanaka K, Kambara T, Lopez-Gitlitz A, et al. Skin rash following administration of apalutamide in Japanese patients with advanced prostate cancer: an integrated analysis of the phase 3 SPARTAN and TITAN studies and a phase 1 open-label study. BMC Urol. 2020 Sep 2;20(1):139. doi:10.1186/s12894-020-00689-0

  40. Tanaka A, Yamashita C, Hinogami H, Shirai H, Yamamura J, Ito R. Localized cutaneous adverse event induced by anastrozole as adjuvant treatment for breast cancer: a case report. Case Rep Dermatol. 2019 Feb 28;11(1):57-63. doi:10.1159/000497469

  41. Andrew P, Valiani S, MacIsaac J, Mithoowani H, Verma S. Tamoxifen-associated skin reactions in breast cancer patients: from case report to literature review. Breast Cancer Res Treat. 2014 Nov;148(1):1-5. doi:10.1007/s10549-014-3150-0

  42. Behbahani S, Geisler A, Kolla A, Dreker MR, Kaunitz G, Pomeranz MK. Art of prevention: the importance of dermatologic care when using aromatase inhibitors. Int J Womens Dermatol. 2021 Jul 17;7(5Part B):769-773. doi:10.1016/j.ijwd.2021.07.002

  43. Piqray. Prescribing information. Novartis; 2022 [cited 2022 May 24]. Available from: https://www.novartis.us/sites/www.novartis.us/files/piqray.pdf

  44. McFarlane T, Rehman N, Wang K, Lee J, Carter C. Cutaneous toxicities of new targeted cancer therapies: must know for diagnosis, management, and patient-proxy empowerment. Ann Palliat Med. 2020 May;9(3):1296-1306. doi:10.21037/apm.2019.08.05

  45. Yasir M, Goyal A, Sonthalia S. Corticosteroid adverse effects. In: StatPearls [Internet]. Treasure Island, Florida: StatPearls Publishing; 2022 Jan- [cited 2022 May 31]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531462/


]]>
CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer https://www.skintherapyletter.com/supplement/casmo-management/ Tue, 06 Sep 2022 17:53:11 +0000 https://www.skintherapyletter.com/?p=13515 Maxwell B Sauder MD, FRCPC, DABD1, Joel Claveau MD FRCPC, DABD2, Marcus Butler MD3, Anneke Andriessen PhD4, Tarek Hijal MD, FRCPC5, Charles W Lynde MD, FRCPC6

1Diplomate of the American Board of Dermatology, Fellow of the Royal College of Physicians of Canada, Associate Professor, Department of Medicine University of Toronto, Onco-dermatologist, Princess Margaret Cancer Centre, Director, Toronto, ON, Canada.
2Fellow of the Royal College of Physicians of Canada, Diplomate of the American Board of Dermatology, Associate Professor, Department of Medicine, Division of Dermatology, Laval University, Director Melanoma and Skin Clinic, Le Centre Hospitalier Universitaire de Québec, Hôtel-Dieu de Québec, Quebec City, QC, Canada.
3Medical Oncologist, Medical Oncology Disease Site Lead for Melanoma/Skin Oncology, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre. Assistant Professor, Department of Medicine, University of Toronto, Associate Member, Department of Immunology, University of Toronto, Toronto, ON, Canada
4Radboud UMC, Nijmegen and Andriessen Consultants, Malden, The Netherlands.
5Fellow of the Royal College of Physicians of Canada, Associate Professor, Department of Oncology, McGill University; Director, Division of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada.
6Fellow of the Royal College of Physicians of Canada, Diplomate of the American Board of Dermatology, Associate Professor, Department of Medicine University of Toronto, Toronto, ON, Canada, Lynderm Research, Markham, ON, Canada.

Abstract
The Canadian skin management in oncology (CaSMO) project was developed to improve cancer patients’ (both active and survivors) quality of life by offering tools to healthcare professionals for preventing, reducing and/or managing cutaneous adverse events (cAEs).
Immunotherapy, specifically immune checkpoint inhibitors (ICIs), for cancer patients is both increasing in indications and use. Similarly, the incidence and onset of cutaneous immunotherapy-related adverse events (cirAEs) vary based on the class and dose of immunotherapy administered, the type of cancer, and factors related to the patients. Dermatologists will increasingly see side effects from immunotherapy.

The CaSMO advisors developed a practical primer on prevention, identification, and treatment, including skincare for cirAEs, focusing on isolated pruritus, psoriasiform eruptions, lichenoid eruptions, eczematous eruptions, and bullous pemphigoid.
A modified Delphi approach was used for the cirAEs practical primer’s development. Recommendations given by the CaSMO advisers are based on information from the guidelines, algorithms, consensus papers, and systematic reviews coupled with their clinical experience and resulting from discussions.

According to the CaSMO group, the management of cirAEs starts with physician awareness and patient education on the occurrence of toxicities, preventive measures, and skincare using gentle cleansers, moisturizers, and sunscreen started before immunotherapy begins and ongoing thereafter as part of the lifestyle.

Keywords: Immunotherapy, cutaneous adverse events, immune checkpoint inhibitor, skin toxicity, psoriasis, pruritus, morbilliform, eczema, bullous pemphigoid

Disclosures
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this manuscript. This work was supported by an unrestricted educational grant from La Roche-Posay Canada. All authors contributed to the manuscript, reviewed it and agree with its content and publication.

PDF Download


Introduction

In 2021 an estimated 229,200 Canadians were diagnosed with cancer.1 In Canada, of the four most commonly diagnosed types of cancer (lung, breast, colorectal, and prostate), excluding non-melanoma skin cancer, lung cancer is the most lethal and expected to cause more deaths than the other types combined.2,3

Immunotherapy activates the body’s immune system to fight cancer. Immune checkpoint inhibitors (ICIs) prevent the deactivating signal by blocking the T-cell shut-off receptors and ligands from binding to each other, thereby disrupting signaling so that T cells remain active and can then recognize and attack cancer cells.4,5 ICIs are approved for treatment across almost every type of solid-organ tumors, many hematologic malignancies, and in many instances, first-line therapy.4,5 In 2019, in the United States, approximately 40% of oncology patients were eligible for treatment with immunotherapy.6 ICIs may be administered as a single agent (anti-CTLA-4 (ipilimumab), anti-PD-1 (pembrolizumab, nivolumab), anti-PD-L1 (atezolizumab, durvalumab, and avelumab)) or as combination immunotherapy (ipilimumab and nivolumab) and even as a combination with other agents.4-6

Oncology patients treated with immunotherapy may experience cutaneous immunotherapy-related adverse events (cirAEs) at any time during and after the cancer treatment, severely impacting the quality of life (QoL) and potentially cancer treatment outcomes.7-24 The incidence and onset of cirAEs vary depending on the drug class, the type of cancer, and factors related to the patient.25 Adverse skin reactions occur in 14%–47% of patients treated with ICIs, ranging from mild and localized to debilitating and widespread in 1%–3% of patients and even potentially causing death.15,16,26-30 Nivolumab-related cirAEs, including isolated pruritus, occurred in approximately 13–20% of patients, of which 0.7% of patients reported grade three or higher cAEs.29-33 Pembrolizumab-induced cirAEs occurred in 9%–27% of patients, of which 1%−4% of patients reported grade three or higher cirAEs.34,35

Frequently occurring cirAEs include pruritus without primary dermatologic findings (isolated pruritus), lichen planus or lichenoid drug eruptions, psoriasiform reactions, eczematoid eruptions, morbilliform eruptions, and bullous diseases, primarily bullous pemphigoid.7-24  

The cirAEs may indicate a therapeutic response. A multicenter retrospective study on patients with non-small-cell lung carcinoma (NSCLC) receiving nivolumab showed that AEs and cirAEs were a strong predictor of survival outcomes, and those presenting with more than 2 AEs showed more benefit than patients with fewer AEs.14  Vitiligo occurs in some patients with melanoma receiving ICIs (Figure 1), and this is significantly associated with both progression-free-survival (PFS) and overall survival (OS) which indicated a two to four times lower risk of disease progression and death.32,36

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 1: Vitiligo
Photo property of Joel Claveau

Major guidelines10-12 recommend the use of systemic steroids for grade 2 or higher “rash” contrary to evidence showing the use of systemic steroids reduces the anticancer effect of ICIs.33  A secondary analysis of a randomized trial on stage III melanoma patients with cirAEs showed that patients who received treatment with systemic steroids for 30 days or longer had lower OS than those without steroid treatment.33  Another multicenter retrospective analysis of patients treated with anti-PD-1 therapy showed that high-dose glucocorticoids used to treat AEs were associated with poorer PFS and OS.35

Scope of the Canadian Skin Management in Oncology Project

The Canadian skin management in oncology (CaSMO) project was developed to improve cancer patients’ (both active and survivors) QoL by offering tools for preventing and managing cAEs.37-39 A general management algorithm to reduce the incidence of all cutaneous toxicities and maintain healthy skin using general measures and over-the-counter agents38 and an algorithm to reduce and treat acute radiation dermatitis39 were previously published. These algorithms aim to support all healthcare providers treating oncology patients, including physicians, nurses, pharmacists, and other medical providers.38,39 The next step in the project was to develop a practical primer on prevention, identification, and treatment for cirAEs, focusing on isolated pruritus, psoriasiform eruptions, lichenoid eruptions, eczematous eruptions, and bullous pemphigoid.

Methods

For the CaSMO cirAEs practical primer’s development, the advisors used a modified Delphi approach following the AGREE II instrument.40,41 The modified Delphi method is a communication technique for interactive decision-making for medical projects.41 The technique was adapted from face-to-face meetings to a virtual meeting to discuss the outcome of literature searches and reach a consensus on the practical primer based on the selected literature. The virtual discussion was followed by a virtual follow-up, replacing a questionnaire.41 The process entailed preparing the project, selecting the advisors, and conducting systematic literature searches followed by two steps.

Step 1: Virtual panel meeting on November 20, 2021, to review the results of the systematic literature review addressing cirAEs prevention, treatment, and maintenance of cirAEs and to discuss and adopt a practical primer using evidence coupled with the panels’ experience and opinion.

Step 2: Online process to fine-tune the practical primer and prepare and review the publication.

Literature Review

The literature review included guidelines, consensus papers, publications on the prevention and management of cirAEs, and clinical and other research studies published in English from January 2010 to September 2021. Excluded were articles with no original data (unless a review article was deemed relevant), not dealing with cirAEs, and publication language other than English.

A dermatologist and a physician-scientist conducted the searches on September 26 and 27, 2021, on PubMed and Google Scholar as a secondary source of the English-language literature using the terms: cirAEs; prevention and treatment of isolated pruritus, psoriasis, lichen planus, eczematous eruptions, bullous eruptions, QoL of patients with cirAEs; skincare and prescription treatment for the prevention, treatment, and maintenance of cirAEs; adjunctive skincare use; education of staff and patients; communication strategies; adherence; concordance; efficacy; safety; tolerability; skin irritation.

The results of the searches were evaluated independently by two reviewers who resolved discrepancies by discussion. The searches yielded one hundred and six publications. Ninety-four papers remained after excluding duplicates (n = 12), and articles deemed not relevant (other subjects, low quality). Seven guidelines, eight systematic literature reviews, 16 reviews, and 37 clinical studies addressed cirAEs. Case reports were included as they provide valuable information in this fast-developing field. Moreover, cirAEs possess complex issues that are difficult to capture in randomized controlled trials (RCT). Ten consensus papers or algorithms and two clinical studies addressed cirAEs, treatment, and skincare. Finally, fourteen other publications addressed various subjects (epidemiology studies, methodology, and general treatment of cirAEs or similar dermatological conditions). Two reviewers who graded the clinical publications evaluated the literature search results. Grading included study type and quality (RCT of high quality = A, B, or C) and level of evidence (level 1 to level 4) using the pre-established criteria.42  The lack of studies on cirAEs treatment with prescription medications and skincare made grading irrelevant. However, the guidelines, systematic literature reviews, and consensus papers provided valuable information.

Immunotherapy and Associated Cutaneous Adverse Events

Immunotherapy

Immunotherapy uses immune checkpoint inhibitors, such as cytotoxic T-lymphocyte-antigen-4 (CTLA-4), inhibitors ipilimumab, programmed cell death receptor-1 (PD-1) inhibitors pembrolizumab, nivolumab, cemiplimab, and programmed death-ligand 1 (PD-L1) inhibitors atezolizumab, durvalumab, and avelumab (Table 1).4,5-11,43,44

Table 1: Immunotherapy classes, molecules, and indications

Drug Class Name Oncologic Indications
CTLA-4 inhibitors Ipilimumab Melanoma, renal cell, colorectal
Tremelimumab Not FDA approved; orphan drug designation for mesothelioma
PD-1 inhibitors Nivolumab Melanoma, lung, head and neck, Hodgkin's disease, bladder, colorectal, hepatocellular, renal cell
Pembrolizumab Melanoma, lung, head and neck, Hodgkin's disease, primary mediastinal large B-cell lymphoma, bladder, colorectal, gastric, cervical, hepatocellular, Merkel cell, renal cell
Cemiplimab Squamous cell carcinoma, basal cell carcinoma
PD-L1 inhibitors Avelumab Merkel cell, bladder, renal cell
Atezolizumab Bladder, lung, breast
Durvalumab Bladder, lung
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), ipilimumab, programmed cell death 1 (PD-1) pembrolizumab, nivolumab, and programmed death-ligand 1 (PD-L1) atezolizumab, durvalumab, and avelumab.4,6,8-10

CTLA-4 impinges on many features of T-cell biology.43,44  The CTLA-4 signaling pathway and the PD-1/PD-L1/PD-L2 signaling pathway are critical checkpoints that are used to down-regulate the body’s immune system that tumors often exploit and activate, thereby evading the body’s immune system.43,44 CTLA-4 dampens T-cell responses via cell-intrinsic and extrinsic pathways. Intrinsic events include, among others, inhibition of protein translation, recruitment of phosphatases, activation of ubiquitin ligases, inhibition of cytokine receptor signaling, and inhibition of lipid microdomain formation on the surface of T-cells. Cell extrinsic events include the competition for CD28 in binding to its ligands CD80/86, the removal of CD80/86, the release of suppressive indoleamine-dioxygenase, and the modulation of Treg function. Antibodies to CTLA-4 may facilitate T-cell tumor entry and alter the movement in tumors and rates of egress.43,44

cirAEs can present as almost any dermatologic condition, but most are inflammatory dermatoses.7-11,26 The median time to onset of cirAEs is four weeks but has a broad range from 2 to 150 weeks, including beyond treatment discontinuation.15,17,45

cirAEs of any grade have been reported at 30-40% of patients receiving PD-1/PD-L1 and approximately 50% of patients treated with ipilimumab.31  Maculopapular rash and pruritus are common cirAEs related to these treatments.31

A systematic literature review on cancer treatment with pembrolizumab and nivolumab observed that the most frequently occurring cirAEs were inflammatory dermatitis, pruritus, and vitiligo.46 The rate of any-grade cirAEs with pembrolizumab and nivolumab was reported at 16.7% (RR=2.6) and 14.3% (RR=2.5), respectively.46 The cirAEs may be associated with pruritus and comprised of erythematous macules, papules, and plaques, predominantly low-grade and localized to the trunk and extremities.46 Challenges with reports of cirAEs are accurate descriptions and diagnoses of the specific dermatoses as many are simply reported as “rash”. Additional cirAEs comprised pruritus [incidence pembrolizumab and nivolumab was 20.2% (RR=49.9) and 13.2% (RR=34.5) respectively] and vitiligo [incidence, 8.3% (RR=17.5) and 7.5% (RR=14.6) respectively].45 The researchers noted that knowledge of cirAEs is critical in delivering optimal cancer treatment, maintaining therapeutic agent dose, and health-related QoL.46

The advisors agreed that cirAEs are likely an indicator of ICIs treatment efficacy and should be managed with topical treatment and judicious, ideally steroid-sparing systemic treatment where possible.33,35-38

Approaches to the most common immunotherapy-related cAEs

The advisors discussed and selected the most common cirAEs: isolated pruritus, psoriasiform eruptions, lichenoid eruptions, eczematous eruptions, morbilliform (maculopapular) eruptions, and bullous pemphigoid eruptions.7-25,27-30

According to the advisors, the management of cirAEs starts with patient education on the occurrence of cirAEs, preventive measures, and skincare using gentle cleansers, moisturizers, and sunscreen started before ICIs treatment begins and ongoing during survival as part of the lifestyle.9-25

Diagnosis of cirAEs

When diagnosing the cirAEs, other etiologies such as an infection, an effect of other agents, or other skin conditions should be ruled out.8-11 

Biopsies play a role in accurately diagnosing the cirAEs when morphology is not clear. Histopathologically, cirAEs can be categorized into four broad groups, group 1: Inflammatory skin disorders, which reflect acute, subacute, or chronic inflammation of various patterns associated with variable epidermal changes, including psoriasiform or lichenoid interface chronic dermatitis.16,50-53 Group 2: ICIs-related bullous skin lesions such as bullous pemphigoid or dermatitis herpetiformis, group 3: Keratinocyte alteration—Grover’s disease54/acantholytic dyskeratosis, and group 4: Immune-reaction mediated by alteration of melanocytes such as regression of nevi, tumoural melanosis, and vitiligo.29,36,48-52 For this review, we will only be focusing on the selected cirAEs.

When assessing the severity of cirAEs, grading systems’ trial limitations need to be considered.9 The Common Terminology Criteria for Adverse Events (CTCAE) classification is typically used; however, in the case of clinical trials, clinicians should be cognisant of the version the trial is using as different versions of CTCAE have different definitions and categorizations.26

A general approach to prevention or reduction of cirAEs as well as initial management of the previously published CaSMO algorithm is displayed (Figure 2) for reference.38  

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 2a and 2b: CaSMO algorithm for preventing or reducing cAEs using skincare
Permission for the reproduction of the algorithm was obtained.13

Patient and Caregiver Education

Patient and caregiver education and information should occur before initiating therapy and continue throughout treatment and survivorship.9-11,37,38,47 The patient should be informed that immunotherapy works differently than traditional chemotherapy and that therapeutic response and related cirAEs differ in timing, presentation, and response to treatment.48-57

Patients should be informed that cirAEs may continue even after discontinuation of the ICIs treatment.48-57 Additionally, patients should be educated to inform all healthcare providers that they are receiving or have received ICIs therapy and to report any changes in health status.54 Patients and caregivers need to be informed that cirAEs can often be managed effectively, especially when they are identified early. In addition, education should be provided on good hygiene, skincare, sun avoidance and protection, the safe handling of medications, and infection control is essential in preventing and supporting optimal management of cirAEs.38,48-57

Severe Cutaneous Adverse Reactions (SCARs)

As described in the CaSMO algorithm, any drug eruption should be assessed if they are serious or life-threatening. Severe cutaneous adverse reactions (SCARs) require prompt clinical, urgent referral and triage.9-11,37-39,47  Symptoms that raise suspicion of SCARs include fever, widespread rash, skin pain, skin sloughing, facial or upper-extremity edema, pustules, blisters, or erosions.9-11,38 SCARs include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), overlap SJS-TEN, acute generalized exanthematous pustulosis (AGEP), and drug reaction with eosinophilia and systemic symptoms (DRESS).7,8,12-25,30,31,34,38,45-61

SJS-TEN occurs in up to 2% of patients treated with ICIs exceedingly rare.31,43  SJS-TEN is characterized by extensive epidermal loss (<10% SJS, >30% TEN, 10-30% SJS-TEN overlap) with mucous membrane erosions.31,37-39,43-49  Classically, this is an acute reaction; however, a slower and more indolent presentation may occur.31,52 ICIs-related DRESS is rare and is mostly reported in case studies. Common DRESS features are fever, eosinophilia, lymphocyte activation, multiorgan involvement, and reactivation of herpes viruses, especially HHV6.60,61 Patients usually develop two or three features of symptoms followed by a stepwise development of other symptoms.60,61

AGEP is a rare, severe, potentially fatal, acute cirAEs with systemic involvement, including abnormal liver function and acute respiratory distress.62  Patients with AGEP may develop multiple organ failure or sepsis. We found one case report on AGEP caused by a combination of PD-1 and chemotherapy therapy.62

SCARs tend to occur more commonly with combination ICI therapy. Management and treatment of SCARs vary and is beyond the scope of this paper.31,59 Permanent discontinuation of ICIs treatment is recommended for grade 4 cirAEs.31,43,47

Isolated Pruritus

Immunotherapy-related isolated pruritus occurs frequently and has a significant impact on QoL (Figure 3).7-25,31,46,55-57  Diagnostic criteria for pruritus have been described as core symptoms, including duration of pruritus (more than six weeks) and a history of signs of scratching.63,64 Associated criteria comprise a range of clinical manifestations, symptoms, functions, and emotions. The function includes the extent of impaired QoL, sleep loss, and days of absence from work. Emotions include possible psychological reactions such as, depression, anxiety, anger, and helplessness.64

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 3: Pruritus without primary dermatologic finding
TDC – RA – 77-year-old male with metastatic non-small cell lung cancer treated with pembrolizumab (PD1 inhibitor) and binimetinib (MEK inhibitor) experiencing generalized pruritus with excoriated papules and nodules. a. left arm; b. back
Photo property of MB Sauder.

Isolated pruritus should be a diagnosis of exclusion once other causes such as pre-bullous pemphigoid, bites, or other drug reactions are ruled out.

A stepwise approach includes starting with over-the-counter topical agents, topical prescription agents, systemic drugs, and phototherapy.63,64 General principles before starting topical and/or systemic treatment comprise skincare using gentle cleansers and moisturizers, especially in the presence of xerosis.63,48

The CaSMO algorithm educates on general measures such as avoiding skin irritants, scented products, temperature extremes, sun, and the use of sun-protective clothing (e.g., brim hats and sunglasses). The information should be provided before immunotherapy starts, and this is especially important for isolated pruritus.38 The daily skincare regimen should be reinforced with emphasis on gentle cleansers, skin moisturization, and sun protection – similar counseling to a patient with atopic dermatitis.37,38,47  

A prurigo nodularis 4-tier treatment ladder64 addresses neutral and immunologic mechanisms that may be applicable to ICIs-induced pruritus.64 Immunologic mechanisms are more likely to be the underlying mechanism in ICIs-induced pruritus. Patients can enter the treatment ladder at any tier and move up or down the ladder based on their clinical presentation.64  Immunologic tier 1 is more likely mechanisms can be treated with TCS, TCI, or topical calcipotriol.64  Moisturizers, including antipruritics such as pramoxine 1% or formulations with menthol or camphor, may be used as an adjunct therapy.64 

For tier 2 neural mechanisms of pruritus medications include selective nor­epinephrine reuptake inhibitors (SNRIs) (i.e., mirtazapine) and gabapentinoids (gabapentin and pregabalin), which have antipru­ritic properties.63,64  Second-generation histamine H1 receptor antagonists were shown to be effective and safe for patients receiving ICIs.64 

Additional second-line systemic therapies such as neurokinin 1 inhibitors (i.e., aprepitant) and inhibi­tors of interleukins (ILs) 4, 13 may be considered for the tier 3 immunologic mechanisms approach.64 When evaluating the need for systemic or topical treatment, possible interactions with cancer therapy are assessed together with concomitant conditions and cirAEs.9-11,15,16,23,24 37,38,47

Clinicians should take caution using systemic steroids and immunomodulators for patients receiving cancer treatment with ICIs (Table 2).9-11

Table 2: Isolated pruritus

Isolated Pruritus
Treatment recommendations First-line Second-line Third-line
Moisturization and sun avoidance
 
Antipruritic additives: pramoxine, menthol, camphor
 
Second-generation H1 antihistamine 
 
TCS, TCI, PDE4 inhibitors
 
TCA (i.e. doxepin)
 
SNRIs (i.e., mirtazapine) and gabapentinoids (gabapentin and pregabalin)
Neurokinin 1 inhibitors (i.e., aprepitant), inhibi-tors of ILs 4, 13, (i.e., dupilumab, tralokinumab)
 
Phototherapy  
 
Methotrexate Inhibitors of IL31 (i.e. nemolizumab – only in trials)
Other comments
Take caution using systemic steroids 
 
Consider biopsy if pruritus is extreme or non-responsive to treatments to rule out pre-bullous pemphigoid
 
Look for alternative diagnoses (e.g., scabies)
 
Quality of life (QoL), Selective nor¬epinephrine reuptake inhibitors (SNRIs), Interleukins (ILs), Topical corticosteroids (TCS), Topical calcineurin inhibitors (TCI), Not applicable (n.a.)

Psoriasiform Eruptions

T helper (Th) cells producing interleukin (IL)-17, IL-22, and tumor necrosis factor (TNF) drive the pathogenesis of psoriasis by orchestrating inflammation in the skin triggering proliferation of keratinocytes and endothelial cells.65 Besides Th17 cells, other immune cells that are capable of producing IL-17-associated cytokines participate in psoriatic inflammation.66-70  ICIs are thought to be driven through the TH17 pathway, and this may have implications on the development of psoriasis but also on the use of systemic psoriasis medications.64,65,71,72

Immunotherapy with anti-PD1 and anti-PDL1 can exacerbate psoriasis, although more severe flares were noted in patients treated with durvalumab.65-68,70,71

A personal or family history of psoriasis is a significant risk factor that should be identified before starting immunotherapy.65,66,68 These patients require regular skin monitoring enabling early diagnosis and treatment of psoriatic exacerbations.65,66,68 Prompt diagnosis can prevent a severe impact on QoL of this cirAE that may compromise therapeutic protocols and final cancer prognosis (Figure 4).53,65,66 A skin biopsy to confirm the diagnosis, although not required, includes parakeratosis, hypogranulosis, regular acanthosis, suprapapillary plate thinning, and neutrophils at various layers of the epidermis.68,70

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 4: Psoriasiform cAEs
Photo property of MB Sauder.

Psoriasiform cirAEs can affect skin, nails, and joints and significantly impact QOL.65-71 Psoriasis can be associated with arthritis as patients have a greater-than-expected incidence of psoriatic arthritis when it occurs as a cirAE of cancer treatment.33,65,66 The choice of therapy takes many factors into account, including the extent and area of involvement, lifestyle, other health issues, and medications. First-line treatments include topical treatment with TCS, TCI, calcitriol, or a combina­tion of a super potent TCS with calcipotriol or tazarotene can be given.65-71  For recalcitrant cases, consider adjuvant narrowband ultraviolet B therapy or oral treatment such as systemic retinoids [acitretin] or apremilast.72-75  Although there is no direct evidence in ICIs treated cancer patients, methotrexate is immunosuppressive and may reduce the therapeutic effect of ICIs, similar to systemic steroids that have been shown to reduce RFS and OS.32,33,35

Acitretin or apremilast is preferred over methotrexate; however, there is an absence of data for apremilast on the effect it may have on the anticancer treatment.68-75  If the lesions persist, treatment with biologics may be required to treat psoriasiform cirAEs. IL-23 agents (gulselkumab, risankizumab, tildrakizumab) are considered most targeted and have the least direct evidence of immunosuppression (e.g. infection and TB reactivation). However, the risk/benefit needs to be considered before starting treatment with biologics (Table 3).76-86

Table 3: Psoriasiform eruption

Psoriasis
Treatment recommendations First-line Second-line Third-line

Moisturization and avoidance of sun exposure

TCS, TCI

Combination steroid products

Vitamin D analogues

Phototherapy

Systemic retinoids (acitretin)

Apremilast

Methotrexate

Biologics: consider most targeted biologics such as  IL-23 inhibitors (guselkumab, tildrakizumab, risankizumab)
Other comments

Differential diagnosis: lichen planus

Avoid cyclosporine

Consider biopsy if extensive, atypical, or non-responsive to therapy
Quality of life (QoL), Interleukin (IL), Body surface area (BSA), Topical corticosteroids (TCS), Topical calcineurin inhibitors (TCI)

Lichen Planus

Immunotherapy-induced lichen planus is a pruritic, papulosquamous disease that can affect skin, hair, and nails (Figure 5). Treatment is required, especially if pruritic when it can severely impact QoL.7-19,27,33,46,63,77,78 When examining the patient exclude guttate psoriasis, mucositis, and bullous disease. Specific investigations include a detailed medical history and medication use, liver function tests including hepatitis C status, and, if required, a skin biopsy.79

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 5: Lichenoid cAEs
Photo property of MB Sauder.

Pruritus may be treated with second-generation histamine H1 receptor antagonists (e.g., blistane, rupatadine, cetirizine and fexofendadine).63,64,79 A retrospective analysis of clinical data investigating if commonly used medications might influence responses to checkpoint inhibitors. The researchers found that concurrent use of second-generation histamine H1 receptor antagonists correlated with significantly improved survival outcomes in those with melanoma or lung cancer. In addition, the antihistamine was effective for treating pruritus in cirAEs.63,64,79 The choice of therapy takes many factors into account, including the extent and area of involvement, other health issues, and medications.8-11,67-69,78,80 First-line treatment includes moisturization and sun avoidance, antihistamines, TCS, and TCI.80,81 Other second-line treatments include oral retinoids (acitretin), apremilast, sulfasalazine, metronidazole, hydroxychloroquine (especially for scalp or presentation with arthritis).80 Additionally, narrowband or broadband UVB or PUVA may be used. Treatment with cyclosporine should be avoided as it may exert effects on the immune system (Table 4).25,31,78

Table 4: Lichen planus

Lichen Planus
Treatment recommendations First-line Second-line Third-line
Moisturization and skincare
 
TCS, TCI
 
Second-generation H1 antihistamine 
 
Metronidazole, 
 
Hydroxychloroquine (especially for scalp or presentation with arthritis)
 
Systemic retinoids (acitretin)
nbUVB
 
PDE4 inhibitors 
 
Sulfasalazine, Griseofulvin, Calcipotriol ointment 
 
Low-dose corticosteroid
 
Other comments
Differential diagnosis: psoriasis, mucositis, bullous disease
 
Avoid cyclosporine
 
Consider concomitant conditions and immune-related AEs
 
Consider biopsy if extensive, atypical, or non-responsive to therapy; biopsy can help distinguish lichen planus from guttate psoriasis  
 
Psoralen and ultraviolet A (PUVA), Body surface area (BSA), Topical corticosteroids (TCS), Topical calcineurin inhibitors (TCI), Phosphodiesterase (PDE)

Eczematous Eruptions

Eczematous eruptions (EE) are associated with altered immune function, epidermal barrier dysfunction, genetic and environmental factors, and poorly understood interaction between these factors.82-85 EE presents clinically as relapsing erythematous and pruritic patches of skin with varying severity (Figure 6).9-11,82-85  Skin biopsies may be taken if the condition is extensive or not responding to therapy or if the diagnosis is in doubt.9-11 Canadian and US guidelines for topical treatment of atopic dermatitis include education and avoiding triggers, routine skincare with gentle cleansers and moisturizers, and EE management foundation regardless of disease severity and prescription treatment.82,83 Conventional moisturizers contain occlusives, humectants, and emulsions. Newer moisturizers designed to restore skin barrier defects include distinct ratios of lipids that resemble physiological compositions.36,38,47,82,83 If EE is not controlled with a moisturizer alone, TCS, TCI, or crisaborole ointment, an anti-inflammatory inhibitor of PDE4, is recommended while continuing skincare.9-11,82-86   Treatment with crisaborole ointment achieved early sustained control of atopic dermatitis flares (reduced pruritus, erythema, exudation, excoriation, induration/papulation, and lichenification).84,85  The topical PDE4 inhibitor offered a safe alternative to TCS and TCI.84,85

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 6: Eczematous eruptions
Photo property of Joel Claveau

For those not adequately controlled with topical treatment, nbUVB may be considered.82,83 Dupilumab is a humanized monoclonal antibody against the shared alpha subunit of IL-4 and IL-13 receptors, blocking these cytokines commonly found in atopic dermatitis-affected skin. The use of dupilumab may be considered for extensive, moderate-to-severe EE. Two large, long-term RCTs demonstrated its efficacy and safety.9-11,82,83,86  

Another option is tralokinumab (IL-13 inhibitor) which was shown to be effective and safe for the treatment of severe atopic dermatitis.87

Treatment with the biologic is preferred to methotrexate which is an immunosuppressive and may reduce the anticancer effect.9-11 TCS, TCI, and crisaborole can be used with any systemic treatment to address an EE flare (Table 5).82-85,93

Table 5: Eczematous eruptions

Eczematous Eruptions
Treatment recommendations (grouped into 1st, 2nd, and 3rd line) First-line Second-line Third-line
Moisturization and sun avoidance
 
TCS 
 
TCI 
 
Topical PDE4 inhibitor (crisaborole)
 
Second-generation H1 antihistamine 
 
Dupilumab
 
Tralokinumab 
 
nbUVB 
 
Methotrexate
 
Systemic steroids
 
Other comments
Look for a classic presentation
 
Consider previous history or family history of atopy
 
JAK inhibitors are not recommended (pending further data)
 
Consider biopsy if extensive or non-responsive to therapy
 
 
Quality of life (QoL), Body surface area (BSA), Janus kinase (JAK), Topical corticosteroids (TCS), Topical calcineurin inhibitors (TCI), Phosphodiesterase (PDE)

Morbilliform (maculopapular) Eruptions

These cirAEs may present as pruritic, nontender, erythematous papular, and macular eruptions on various body locations.37,38,46,47 Physical examination focusing on the morphology and the distribution, starting on the trunk and then spreading to limbs, of the presented morbilliform eruptions is required to distinguish between the various cirAEs (Figure 7).37,38,46,47 Laboratory tests may be needed and include a complete blood count, electrolytes, renal and liver function, and inflammatory markers.37,38,46,47 Peripheral blood eosinophilia (≥500 eosinophils/microL) may be caused by numerous conditions, including allergic, infectious, inflammatory, and neoplastic disorders (Table 6).37,38,46,47  Mild to moderate conditions may be treated with general skin care measures, TCS, TCI, and oral histamine H1 receptor antagonists to reduce pruritus.63,64,94 Generally, this condition can be managed with aggressive topical treatment; however, for very severe and symptomatic cases, ICIs-treatment may be held, and a short course of systemic corticosteroids may be indicated.94 

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 7: Morbilliform eruptions
Photo from MB Sauder.

Table 6: Morbilliform eruptions

Morbilliform (maculopapular) Eruptions
Diagnosis
Drug eruptions can range from a mild lesion involving only the skin to severe complex eruptions with systemic involvement, such as TEN. Systemic involvement should be explored even in a mild cutaneous eruption due to a drug because skin manifestation does not necessarily mirror the severity of the systemic involvement. 
 
Ensure another drug does not cause symptoms; take a drug history, looking for medications started 2-3 weeks before the eruption. 
 
Consider biopsy if the eruptions are extreme or non-responsive to treatment. 
 
Treatment recommendations (grouped into 1st, 2nd, and 3rd line) First-line Second-line Third-line
Moisturization and skincare TCS
 
If accompanied by itch: pramoxine, menthol, camphor 
 
Second-generation H1 antihistamine 
 
Systemic corticosteroids
Other comments
Topical corticosteroids (TCS)

Bullous Pemphigoid

Bullous pemphigoid (BP) is an autoimmune bullous dermatosis caused by a variety of medications. One of the more common medications to cause BP now are ICIs.88,90,91 A skin biopsy may be required to confirm BP, including direct immunofluorescence to identify the presence of antibodies in the skin, typically demonstrating linear IgG and C3. Further studies on serum can detect circulating autoantibodies (anti-BP180 or anti-BP230) with either ELISA or indirect immunofluorescence. Clinically, BP classically presents with pruritic tight tense bullae filled with serous fluid on erythematous skin on various body locations (Figure 8).88,90,91 The pre-bullous phase presents as intense pruritic urticoid plaques that can be diagnostically challenging and may be mistaken for the more common cirAE of isolated pruritus or urticaria.88,90,91 The post-bullous phase presents as hemorrhagic crusts on a background of erythema representing ruptured bullae.

CaSMO Management of Cutaneous Toxicities Associated with Immune Checkpoint Inhibitors: A Practical Primer - image
Figure 8: Bullous eruptions
Severe bullous pemphigoid associated with pembrolizumab therapy
Photo from MB Sauder

cirAE BP can occur at any time, including after discontinuation of ICI. The onset to developing BP is within days or weeks of ICI exposure or may be delayed several months after starting ICI.31 Upon diagnosis ICIs is to be held and may require permanent discontinuation.3,15,46 In milder cases, aggressive topical treatments with class I TCS may be as effective as systemic steroids.92  cirAE BP may require systemic treatment and temporary, if not permanent, cessation of immunotherapy.3,15,46 Systemic corticosteroids may be used the achieve control quickly while waiting for steroid-sparing treatments to take effect.88,90-92 Non-immunosuppressive systemic treatment includes oral tetracycline-class antibiotics combined with oral niacinamide 500 mg twice a day, omalizumab, IVIg, and dupilumab.31,88,90-92 However, steroid-sparing agents that are immunosuppressive may be required in order to control BP ongoing, including methotrexate, mycophenolate mofetil or rituximab.91 While rituximab may be immunosuppressive, it works on B-cells and may not hinder the T-cell activation from ICIs. In patients with cirAE BP, obtaining disease control as quickly as possible is ideal not only for improved QoL, and decreased morbidity but also if treatment is to be reinitiated (Table 7).93,95

Table 7: Bullous eruptions

Bullous Eruptions
Diagnostics
Prompt clinical/pathologic workup is essential (urgent referral & triage within 2-3 days), including biopsy & blood work. 
 
Biopsy can help determine if the eruption is bullous pemphigoid, bullous lichen planus, or TEN and blood work can identify pemphigus and pemphigoid antibodies 
 
Treatment recommendations (grouped into 1st, 2nd, and 3rd line) First-line Second-line Third-line
High-dose TCS
 
Tetracycline & nicotinamide
 
Systemic coticosteroids
 
Methotrexate
 
Dapsone
 
Cellcept (with caution)
 
Rituximab (some evidence); off-label, Intravenous immunoglobin,
 
Omalizumab
 
Dupilumab
 
Other comments
With mild symptoms, consider holding immunotherapy and consult a dermatologist to determine resuming treatment.  
 
In severe cases, immediately hold immunotherapy and seek urgent care from a dermatologist, oncologist, or ER.
 
Immunotherapy is usually discontinued until eruptions are under control, 
 
Avoid azathioprine & cyclosporine 
 
Cutaneous adverse events (cAEs), Quality of life (QoL), Toxic epidermal necroly¬sis (TEN), Topical corticosteroids (TCS)

Limitations

The details provided on the mode of action of ICIs were limited to what is clinically relevant for this primer on cirAEs. Clinical studies on prescription medications and skin care for cirAEs frequently are case reports, case series, or have small sample sizes. For this reason, grading the evidence resulting from the literature searches was irrelevant. Therefore, recommendations given by the CaSMO project advisers are based on information from the guidelines, algorithms, consensus papers, and systematic reviews coupled with their clinical experience and resulting from discussions. More work is required to identify the best practice evidence-based management of cirAEs.

Summary and Conclusions

Immunotherapy for cancer patients is fast-developing into the standard of care for many malignancies. Although many publications are available on cirAEs, publications on the treatment using prescription medications and skincare are scarce.

The CaSMO practical primer focuses on isolated pruritus, psoriasiform eruptions, lichenoid eruptions, eczematous eruptions, and bullous pemphigoid. The practical primer addresses the need for physician awareness, patient education on the occurrence of cirAEs, prompt diagnosis, prevention, treatment, and ongoing skincare started before ICI.

References

  1. https://cdn.cancer.ca/-/media/files/cancer-information/resources/publications/2021-canadian-cancer-statistics-special-report/0835-2976-2021-canadian-cancer-statistics-en.pdf?rev=8e016fe8c5ea4c23b05ea08bf1018ca6&hash=C5BAEC543E496EDD8460CBBF6D44A010&_ga=2.47880293.391373246.1644172159-1100777747.1644172159
  2. Canadian Cancer Society; 2021. Available at: https://www.cancer.ca/en/cancer-information/cancer-101/cancer-statistics-at-a-glance/
  3. Mittmann N, Liu N, Cheng SY, Seung SJ. Health system costs for cancer medications and radiation treatment in Ontario for the most 4 most common cancers: a retrospective cohort study. Can Med Association J Open 2020;8:E191-8. Epub 2020 March 16 doi: https://doi.org/10.9778/cmajo.20190114
  4. Dine J, Gordon R, Shames Y, et al: Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs 2017; 4:127-135.
  5. American Society of Clinical Oncology (ASCO). Understanding immunotherapy therapy. Accessed at https://www.cancer.net/ navigating-cancer-care/how-cancer-treated/immunotherapy-and-vaccines/understanding-immunotherapy on January 16, 2022.
  6. Haslam A, Gill J, Prasad V: Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs. JAMA Netw Open 2020;3:e200423.
  7. Malviya N, Tattersall IW, Leventhal J, et al. Cutaneous immune-related adverse events to checkpoint inhibitors. Clin Dermatol 2020;38:660-678.
  8. Lacouture ME, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018 Nov;19(Suppl 1):31-39.
  9. Haanen J, Carbonnel F, Robert C, et al. management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(7) (suppl_4):119-142.
  10. Schneider BJ, Naidoo J, Santomasso BD, et al. management of immunotherapy-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology (ASCO) guideline update. J Clin Oncol 2021;39(12):4073-4126. PIMD: 34724392.
  11. Thompson JA, Schneider BJ, Brahmer J et al. NCCN Guidelines insights: Management of immunotherapy-related toxicities, Version 1.2020. J Natl Compr Cancer Netw. 2020;18(3):230-241.DOI: 10.6004/jnccn.2020.0012
  12. Lacouture ME, Mitchell EP, Piperdi B, et al. Skin toxicity evaluation protocol with panitumumab (STEPP), a phase II, open-label, randomized trial evaluating the impact of a pre-emptive skin treatment regimen on skin toxicities and quality of life in patients with metastatic colorectal cancer. J Clin Oncol. 2010 March 10;28(8):1351-7.
  13. Qin Q, Patel VG, Wang B, et al. Type, timing, and patient characteristics associated with immune-related adverse event development in patients with advanced solid tumors treated with immune checkpoint inhibitors. J Clin Oncol 2020;38:e15160.
  14. Ricciuti B, Genova C, de Giglio A, et al. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab. J Cancer Res Clin Oncol. 2019 Feb;145(2):479-48
  15. Sibaud V. Dermatologic Reactions to Immune Checkpoint Inhibitors : Skin Toxicities and Immunotherapy. Am J Clin Dermatol. 2018 Jun;19(3):345-361.
  16. Curry JL, Tetzlaff MT, Nagarajan P, et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol. 2017;44(2):158-76.
  17. Tang SQ, Tang LL, Mao YP, et al: The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: A pooled analysis of 23 clinical trials and 8,436 patients. Cancer Res Treat 2021;53:339-354.
  18. Druyts E, Boye M, Agg H, et al. Immune-related adverse events and efficacy outcomes in patients treated with immunotherapy: A systematic review and meta-analysis. J Clin Oncol 2020;38.
  19. Patel AB, Pacha O: Skin reactions to immune checkpoint inhibitors. Adv Exp Med Biol 2018;995:117-129.
  20. Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol 2020; 83:1255-1268.
  21. Kaul S, Kaffenberger BH, Choi JN, et al. Cutaneous adverse reactions of anticancer agents. Dermatol Clin 2019;37:555-568.
  22. Wang LL, Patel G, Chiesa-Fuxench ZC, et al. Timing of onset of adverse cutaneous reactions associated with programmed cell death protein 1 inhibitor therapy. JAMA Dermatol 2018;154:1057-1061.
  23. Simonsen AB, Kaae J, Ellebaek E, et al. Cutaneous adverse reactions to anti-PD-1 treatment—A systematic review. J Am Acad Dermatol 2020;83:1415-1424.
  24. Hussaini S, Chehade R, Boldt RG, et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors—A systematic review and meta-analysis. Cancer Treat Rev 2021;92:102134.
  25. Raschi E, Gatti M, Gelsomino F, et al. Lessons to be learned from real-world studies on immune-related adverse events with checkpoint inhibitors: A clinical perspective from pharmacovigilance. Target Oncol 2020;15:449-466.
  26. National Cancer Institute: Common Terminology Criteria for Adverse Events Version 5.0. NIH Publication, Bethesda, MD, 2018
  27. Schaberg KB, Novoa RA, Wakelee HA, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol. 2016 Apr;43(4):339-46.
  28. Voudouri D, Nikolaou V, Laschos K, et al.Anti-PD1/PDL1 induced psoriasis. Curr Probl Cancer. Nov-Dec 2017;41(6):407-12
  29. Rofe O, Bar-Sela G, Keidar Z, et al. Severe bullous pemphigoid associated with pembrolizumab therapy for metastatic melanoma with complete regression. Clin Exp Dermatol. 2017 Apr;42(3):309-12.
  30. Vivar KL, Deschaine M, Messina J, et al. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J Cutan Pathol. 2017 Apr;44(4):381-84.
  31. Puzanov I, Diab A, Abdallah K et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations for the Society for immunotherapy of Cancer (SITC) Toxicity Management Working group. J Immuno Therapy Cancer 2017;5:95 DOI 10.1186/s40425-017-0300-z
  32. Teulings HE, Limpens J, Jansen SN et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol. 2015 March 1;33(7):773-81.
  33. Eggermont AMM, Kicinski M, Blank CU et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo. A secondary analysis of a randomized clinical trial. JAMA Oncol. 2020;6(4):519-527. Doi: 10.1001/jamaoncol.2019.5570 PMID: 31895407
  34. Herbst RS, Baas P, Kim DW et al. Pembrolizumab versus docetaxel for previously treated, PD‐L1‐positive, advanced non‐small‐cell lung cancer (KEYNOTE‐010). Lancet 2016;387:1540–1550.
  35. Bai X, Hu J, Betof Warner A et al. Early Use of High-Dose Glucocorticoid for the management of irAE Is Associated with Poorer Survival in Patients with Advanced Melanoma Treated with Anti-PD-1 Monotherapy. Clin Cancer Res. 2021 Nov 1;27(21):5993-6000. doi: 10.1158/1078-0432.CCR-21-1283. Epub 2021 August 10. PMID: 34376536.
  36. Hua C, Boussemart L, Mateus C et al. Association of virtiligo with tumor response in patients with metastatic melanoma treated with pemobrolizumab. JAMA Dermatol. 2016;15(1)45-51. Doi: 10.1001/jamadermatol.2015.2707
  37. Sauder MB, Addona M, Andriessen A, et al. The role of skin care in oncology patients. Skin Ther Letter; 2020 S Oct(10):1-12.
  38. Sauder MB, Andriessen A, Claveau J, et al. Canadian skin management in oncology (CaSMO) algorithm for patients with oncology treatment-related skin toxicities. Skin Ther Letter; 2021 S March 21:1-10.
  39. Hijal T, Sauder MB, Andriessen A, Claveau J, Lynde CW. Canadian Skin Management in Oncology Group (CaSMO) algorithm for the prevention and management of acute radiation dermatitis. Skin Ther Letter; 2021 S.
  40. Brouwers M, Kho ME, Browman GP, et al. AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in healthcare. Can Med Association J 2010,182:E839-42
  41. Trevelyan EG, Robinson N. Delphi methodology in health research: how to do it? Eur J Integrative Med 2015;7(4):423-428.
  42. Smith Begolka W, Elston DM, Beutner KR. American Academy of Dermatology evidence-based guideline development process: responding to new challenges and establishing transparency. J Am Acad Dermatol.2011 Jun;64(6):e105-12. doi: 10.1016/j.jaad.2010.10.029.
  43. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60.
  44. Digklia A, Duran R, Homicsko K et al. Cancer Immunotherapy: A Simple Guide for Interventional Radiologists of New Therapeutic Approaches. Cardiovasc Intervent Radiol. 2019 Sep;42(9):1221-1229. doi: 10.1007/s00270-018-2074-1.
  45. Qin Q, Patel VG, Wang B, et al. Type, timing, and patient characteristics associated with immune-related adverse event development in patients with advanced solid tumors treated with immune checkpoint inhibitors. J Clin Oncol 2020;38:e15160.
  46. Belum VR, Benhuri B, Pastow MA et al. Characterization and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016;60(6) 12–25. doi:10.1016/j.ejca.2016.02.010.
  47. Lacouture ME, Choi J, Ho A et al. US cutaneous oncodermatology management (USCOM) a practical algorithm. J Drugs Dermatol 2021; 20(9)(Suppl):s3-19.
  48. Larkin J et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.
  49. Anforth RM, Blumetti TCMP, Kefford RF, et al. Cutaneous manifestations of dabrafenib in patients with metastatic melanoma. Br J Dermatol. 2012 Nov;167(5):1153-60.
  50. Shi VJ, Rodic N, Gettinger S et al. Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell dealth 1 and anti-programmed cell death ligand 1 immunotherapy. J Am Med Assoc Dermatol 2016; 152: 1128–1136.
  51. Tetzlaff MT, Nelson KC, Diab A et al. Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: a marker of therapy response in a subset of melanoma patients Am J Dermatopathol 2017; 39: 121–129.
  52. Koelzer VH, Buser T, Willi N et al. Grover’s-like drug eruption in a patient with metastatic melanoma under ipilimumab therapy. J Immunother Cancer 2016;4(8): 47. DOI: 1186/s40425-016-0151-z
  53. Boada A, Carrera C, Segura S, et al. Cutaneous toxicities of new treatments for melanoma. Clin Transl Oncol. 2018;20:1373-1384.
  54. Bayer V, Amaya B, Baniewicz D, et al. Cancer immunotherapy: An evidence-based overview and implications for practice. Clin J Oncol Nurs 2017;21:13-21.
  55. Keiser MF, Patel AB, Altan M: Cutaneous toxicities in lung cancer patients on immune checkpoint inhibitor therapy. Clin Lung Cancer 2021;22:195-e1.
  56. Ala-Leppilampi K, Baker NA, McKillop C, et al. Cancer patients’ experiences with immune checkpoint modulators: A qualitative study. Cancer Med 2020;9:3015-3022.
  57. Kumar V, Chaudhary N, Garg M, et al. Current diagnosis and management of immune-related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol 2017; 8:49.
  58. Prior LM et al. Toxicities in immunotherapy: Can they predict response? J Clin Oncol. 2016;34(15 suppl):e14534-e14534.
  59. Muntyanu A, Netchiporouk E, Gerstein W, et al. Cutaneous immune-related adverse events (irAEs) to immune checkpoint inhibitors: A dermatology perspective on management. J Cutan Med Surg 2021;25:59-76.
  60. Ai L, Gao J, Zhao S et al. Nivolumab-associated DRESS in a genetic susceptible individual. J Immunother Cancer 2021;9:e002879. doi:10.1136/jitc-2021-002879
  61. Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer 2019;7:306
  62. Matsubara T, Uchi H, Takamori S et al. Acute Generalized Exanthematous Pustulosis Caused by the Combination of Pembrolizumab Plus Chemotherapy in a Patient With Squamous-Cell Carcinoma. Clin Lung Cancer 2020;21(2):e54-e56.
  63. Ständer S, Pereira MP, Yosipovitch G et al. IFSI-guideline on chronic prurigo including prurigo nodularis. Itch 2020;5:e42 http://dx.doi.org/10.1097/itx.0000000000000042
  64. Elmariah S, Kim BS, Yosipovitch G, et al. Practical approaches for diagnosis and management of prurigo nodularis: United States expert panel consensus. J Am Acad Dermatol 2021;(3):747-760. doi.org/10.1016/j.jaad.2020.07.025
  65. Guven DC, Kilickap S, Guner G, et al. Development of de novo psoriasis during nivolumab therapy in a patient with small-cell lung cancer. J Oncol Pharm Pract 2020;26:256-258.
  66. Voudouri D, Nikolaou V, Laschos K, et al. Anti-PD1/PDL1 induced psoriasis. Curr Probl Cancer 2017;41:407-412.
  67. Choi Y, Jang D, Byun HJ et al. Psoriasiform dermatitis related with T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains inhibitor in a patient with non-small-cell lung cancer. Ann Dermatol 2020;32(2):172-174. PMID: 33911733 | PMCID: PMC7992544
  68. Amaris N, Geisler BS, Lacouture ME et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Acad Dermatol 2020;83(5):1255-1268.
  69. Phillips GS, Wu J, Hellmann MD, et al. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol. 2019;37:2746–2758.
  70. Kato Y, Otsuka A, Miyachi Y, Kabashima K. Exacerbation of psoriasis vulgaris during nivolumab for oral mucosal melanoma. J Eur Acad Dermatol Venereol. 2016;30:e89–e91.
  71. Totonchy MB, Ezaldein HH, Ko CJ, Choi JN. Inverse psoriasiform eruption during pembrolizumab therapy for metastatic melanoma. JAMA Dermatol. 2016;152:590–592.
  72. Brahmer JR, Lacchetti C, Schneider BJ, et al. management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of clinical oncology clinical practice guideline. J Clin Oncol 2018;36:1714–68.doi:10.1200/JCO.2017.77.6385
  73. Elmets CA, Leonardi CL, Davis DMR, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with awareness and attention to comorbidities. J Am Acad Dermatol. 2019; 80: 1073–113. x
  74. Siciliano MA, Dastoli S, d’Apolito M et al. Pembrolizumab-Induced Psoriasis in Metastatic Melanoma: Activity and Safety of Apremilast, a Case Report. Front. Oncol. 2020;10:579445. doi: 10.3389/fonc.2020.579445
  75. Fattore D, Annunziata MC, Panariello L, Marasca C, Fabbrocini G. Successful treatment of psoriasis induced by immune checkpoint inhibitors with apremilast. Eur J Cancer 2019;110:107–9. doi: 10.1016/j.ejca.2019.01.010
  76. Frieder J, Kivelevitch D, Menter A: Secukinumab: a review of the anti-IL-17A biologic for the treatment of psoriasis. Ther Adv Chronic Dis. 2018;9:5-21. 1177/2040622317738910
  77. De Bock M, Hulstaert E, Kruse V, Brochez L: Psoriasis vulgaris exacerbation during treatment with a PD-1 checkpoint inhibitor: case report and literature review. Case Rep Dermatol. 2018;10:190-197. 10.1159/000491572
  78. Martinez-Domenech A, Garcia-Legaz Martinez M, Magdaleno-Tapial J, et al. Digital ulcerative lichenoid dermatitis in a patient receiving anti-PD-1 therapy. Dermatol Online J 2019;25.
  79. De la Paz Sarasola M, Taquez Delgado MA, Medina VA et al. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect. 2021;9(5):e00778.
  80. Tziotzios C, Lee JYW, Brier T, et al. Lichen planus and lichenoid dermatoses. J Am Acad Dermatol 2018; 79: 789–818.
  81. Tattersall IW, Leventhal JS: Cutaneous toxicities of immune checkpoint inhibitors: The role of the dermatologist. Yale J Biol Med 2020;93:123-132.
  82. Lynde CW, Bergman J, Fiorillo L, et al. Clinical insights about topical treatment of mild-to-moderate pediatric and adult atopic dermatitis. J Cutan Med Surg. 2019 May/Jun;23(3_suppl):3S-13S.
  83. Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71:116–132.
  84. Yosipovitch G, Simpson EL, Tan H et al. Effect of crisaborole topical ointment, 2%, on atopic dermatitis–associated pruritus: an extended analysis of 2 phase 3 clinical trials. Itch 2019;4(1)p e12.
  85. Paller AS, Tom WL, Lebwohl MG, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016 Sep;75(3):494-503.e6
  86. Simpson EL, Bieber T, Guttman-Yassky E, et al. Two phase 3 trials of Dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–2348
  87. Wollenberg A, Blauvelt A, Guttman-Yassky E et al. Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br J Dermatol. 2021;184(3):437-449.
  88. Fontecilla NM, Khanna T, Bayan CY, et al. Bullous pemphigoid associated with a new combination checkpoint inhibitor immunotherapy. J Drugs Dermatol 2019;18:103-104.
  89. Kubicki SL, Welborn ME, Garg N, et al. Granulomatous dermatitis associated with ipilimumab therapy (ipilimumab associated granulomatous dermatitis). J Cutan Pathol 2018;45:636-638.
  90. Siegel J, Totonchy M, Damsky W, et al: Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol 2018;79:1081-1088.
  91. Lopez AT, Khanna T, Antonov N, et al. A review of bullous pemphigoid associated with PD-1 and PD-L1 inhibitors. Int J Dermatol 2018;57:664-669.
  92. Joly P, Roujeau JC, Benichou J et al. A comparison of oral and topical corticosteroids in patients with bullous pemphigoid. N Engl J Med 2002; 346:321-327
    DOI: 10.1056/NEJMoa011592
  93. EsfahaniK, Elkrief A, Calabrese C, et al. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol 2020;17:504–15. doi:10.1038/s41571-020-0352-8
  94. Fatima S, Veenstra J, Antonyan AS et al. Severe recalcitrant morbilliform eruption from dual immune checkpoint blockade. JAAD Case Rep 2018;4(6):593-595. PMID: 29955646
  95. Aizman L, Nelson K, Sparks AD, et al. The influence of supportive oncodermatology interventions on patient quality of life: A Cross-Sectional survey. J Drugs Dermatol. 2020May 1;19(5):477-82.
]]>