Monica Shah – Skin Therapy Letter https://www.skintherapyletter.com Written by Dermatologists for Dermatologists Wed, 24 Nov 2021 16:57:49 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.1 Hair Removal Practices: A Literature Review https://www.skintherapyletter.com/dermatology/hair-removal-practices/ Fri, 10 Sep 2021 20:12:56 +0000 https://www.skintherapyletter.com/?p=12767 Cindy Na-Young Kang, BMSc1; Monica Shah, MD1; Charles Lynde, MD, FRCPC2,3; Patrick Fleming, MD, MSc, FRCPC2,3

1Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
2Lynde Institute for Dermatology (Private Practice), Markham, ON, Canada
3Division of Dermatology, University of Toronto, ON, Canada

Erratum


Since the publication of the article “Hair removal practices: a literature review” by Kang CN, Shah M, Lynde C, Fleming P. Skin Therapy Lett. 2021 Sep-Oct;26(5):7-11, the authors have identified current literature that warrants changes to the information presented on the use of lasers and intense pulsed light for hair removal. Electrolysis is noted as the only permanent method of hair removal and that lasers are a temporary hair removal practice (Abstract, in the paragraph under Lasers, in the paragraph under Electrolysis, Table 1 under Lasers Permanency, and Conclusion). However, laser hair removal can in fact be permanent in some individuals especially with longer treatments, as noted in a recent article by Altunel CT, Kartal SP. Reconceptualizing the permanence of alexandrite laser hair removal results: a long-term follow-up study. J Cosmet Laser Ther. 2020 Nov 16;22(6-8):271-4. doi: 10.1080/14764172.2021.1936067. Epub 2021 Jun 5. PMID: 34096438. Table 1 also states that lasers are “effective for thin vellus hairs, and white, grey, or red hairs” under Advantages but this should state lasers are “ineffective for thin vellus hairs, and white, grey, or red hairs” under Disadvantages, as stated in the paragraph under Lasers. Additionally, the efficacy of intense pulsed light for hair removal has been modified in Table 1 and in the 2nd paragraph under the section Intense Pulsed Light (IPL) System. IPL is less expensive than laser hair removal, however, is not as effective, as noted in a recent article by Vaidya T, Hohman MH, Kumar DD. Laser hair removal. [Updated 2021 Aug 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. Moreover, although treatment duration may be shorter, IPL typically requires more treatment sessions to produce results.


The authors apologize for any inconvenience caused. The online and PDF version of this article has been corrected.


Funding Sources: None

Conflict of interest:
Cindy Kang and Monica Shah have no conflicts of interest to disclose. Charles Lynde has acted as a principal investigator, speaker and/or consultant and/or advisory board member for AbbVie, Amgen, AnaptysBio, Arcutis, Avillon, Bristol-Myers Squibb, Celgene, Cipher, Eli Lilly, Galderma, Genentech, GlenMark, Incyte, Janssen, Kyowa, Leo Pharma, L’Oréal, Merck, Novartis, Pfizer, Sanofi and Valeant. Patrick Fleming has received honorarium and/or consulting and/or advisory boards and/or speaking fees for AbbVie, Altius, Amgen, Aralez, Bausch Health, Cipher, Eli Lilly, Galderma, Janssen, Leo Pharma, L’Oréal, Novartis, Pfizer, Sanofi-Genzyme and UCB.

Abstract:
Hair removal practices have evolved from adhering to social, cultural, and religious traditions to meeting aesthetic standards. Hair removal methods can be divided into two categories: 1) depilation, which involves removing the hair shaft and includes shaving and chemical depilatories, and 2) epilation, which involves removing the hair shaft, follicle, and bulb, and includes plucking, threading, waxing, sugaring, lasers, intense pulsed light system, electrolysis, and photodynamic therapy. Furthermore, an eflornithine hydrochloride 13.9% cream (Vaniqa®, neither an epilatory or depilatory technique), has been US FDA- and Health Canada-approved to slow the rate of facial hair growth and to be used in combination with other hair removal methods. Most methods are temporary except for electrolysis and laser therapy for some individuals, and each technique has advantages and disadvantages in terms of efficacy and adverse events. Importantly, most studies examining the efficacy of hair removal techniques are limited to darker hair and fairer skin, and further research is required especially for those with light-colored hair.

Key Words:
chemical depilatories, depilation, electrolysis, epilation, hair removal, laser hair removal, photodynamic therapy, plucking, shaving, sugaring, threading, Vaniqa, waxing

Introduction

Hair removal methods fall under two categories of depilation and epilation, each with distinctive advantages, disadvantages, and adverse events (Table 1).1 Depilation removes the hair shaft and includes techniques such as shaving and chemical depilatories. Epilation removes the hair shaft, follicle, and bulb, and includes techniques such as plucking, threading, waxing, sugaring, lasers, intense pulsed light system (IPL), electrolysis, and photodynamic therapy (PDT).1 In the 2000s, eflornithine hydrochloride cream 13.9% (Vaniqa®) was US FDA and Health Canada approved. Topical eflornithine is not considered an epilatory or depilatory technique but slows the rate of facial hair growth when used in conjunction with other methods.2

 

Hair Removal Method Advantages Disadvantages Adverse Events Permanency
Epilation
Shaving
  • Convenient
  • Inexpensive
  • Useful for larger area
  • Does not affect hair thickness or growth rate
  • Leaves blunt tips
  • Pseudofolliculitis
  • Skin abrasion
  • Skin irritation
Temporary
Chemical depilatories
  • Does not result in hair stiffness post-treatment
  • Easy to use and painless
  • Slower regrowth than shaving
  • Useful for larger areas
  • Less effective in removing darkly pigmented and coarse hair
  • Allergic contact dermatitis
  • Irritant contact dermatitis
Temporary
Depilation
Plucking
  • Inexpensive
  • Minimal skin damage
  • Slower regrowth period (2 to 12 weeks)
  • Does not affect hair growth rate unless hairs are in anagen phase
  • Efficacy dependent on user tolerance and technique
  • Impractical for larger areas
  • Tedious
  • Erythema
  • Follicular distortion
  • Folliculitis
  • Hyperpigmentation
  • Pain
  • Scarring
Temporary
Threading
  • Precise
  • Impractical for larger areas
  • Requires expertise
  • Tedious
  • N/A
Temporary
Waxing
  • Slower regrowth period than shaving or chemical depilatories
  • Useful for larger areas
  • May cause follicular trauma and reduce hair
    regrowth over time
  • Allergic reactions
  • Folliculitis
  • Scarring
  • Skin irritation
  • Thermal injury
  • Temporary
Temporary
Sugaring
  • Cost-effective
  • Hydrating
  • Reduces risk of skin redness, trauma, and scarring compared to shaving or hot wax
  • Safe and painless
  • Utilizes natural ingredients
  • Useful for larger areas
  • Can only remove hairs of sufficient length
  • Allergic reactions
  • Skin irritation
Temporary
Lasers
  • Can be permanent
  • Rapid hair removal
  • Useful for larger areas
  • Ineffective for thin vellus hairs, and white, grey, or red hairs
  • Increased adverse events in darker skin types
  • Blisters
  • Erythema
  • Eschar formation
  • First- & second-degree burns (diode laser)
  • Folliculitis (alexandrite laser)
  • Petechiae (Nd:YAG laser)
  • Pigmentation changes
  • Skin damage
  • Transient edema (Nd:YAG laser)
Temporary

Permanent
in some
individuals

Intense pulsed light system
  • Effective in darker hair and lighter skin types
  • Less expensive than laser therapy
  • Short treatment duration
  • Useful for larger areas
  • Less effective and may require more treatment sessions than laser therapy
  • Bulky/heavy device that is difficult to maneuver
  • Difficult to predict efficacy
  • Edema
  • Erythema
  • Hyperpigmentation
  • Hypopigmentation
  • Pain
Temporary
Electrolysis
  • Permanency
  • Efficacy dependent on operator’s skills
  • Impractical for larger areas
  • No standardization of licensure to practice
  • Patients with hirsutism will experience conversion of vellus to terminal hairs in treatment areas
  • Tedious; can be time-consuming
  • Crusting or follicular nodules with repeated insertions
  • Local infection or pain
  • Post-inflammatory hypo- or hyperpigmentation
  • Scarring/keloid formation
  • Transient erythema and edema
Permanent
Photo-dynamic therapy
  • Can be used in all skin and hair types
  • Reasonable alternative to lasers
  • Requires further investigations to be safely used for hair removal
  • N/A
Temporary
Other
Eflornithine hydrochloride 13.9% cream
  • Quick results (as early as 4 to 8 weeks)
  • Cannot be used alone
  • Only for facial application
  • Acne
  • Dizziness
  • Dry skin
  • Folliculitis
  • Indigestion
  • Itching or rash
  • Redness or irritation
  • Stinging or burning
  • Tingling
Temporary

Table 1: Hair removal methods – advantages, disadvantages, adverse events, and permanency

 


Hair Removal Methods

Depilation

Shaving

Shaving is a cost-efficient and popular technique for male facial hair and female underarm and leg hair removal.1,3 The two methods include: 1) wet shaving with a safety razor and 2) dry shaving with an electric razor.1,3 The first razors used in the 17th century had straight, fixed blades made of tempered steel which were dangerous to use and required regular maintenance (honing and stropping). In 1903, the revolutionary King Camp Gillette T-shape razor was introduced with the first double-edged disposable blade which did not require honing and stropping, but still needed direct handling for blade replacement. In the 1920s, the disposable injector blade was introduced, a safer and more convenient method without direct handling. In 1931, the razor blade was again revolutionized by the electric razor blade, which was costlier, but provided enhanced safety (the blade never directly touched the skin) and convenience (long-lasting and eliminated the need for shaving cream).3,4 Finally, in 1970, hoe-shaped safety razors with disposable cartridges were launched, and in 1975, the disposable razor was introduced. Both were safe to use, inexpensive, and convenient, with the disposable razor the most convenient of all models.5

Shaving (wet or dry) does not interrupt the anagen phase and, therefore, is a temporary hair removal method that necessitates frequent treatment.1,6 Shaving is convenient and inexpensive, but may cause irritation, skin abrasions, and pseudofolliculitis.1,7 Moreover, shaving does not change hair thickness or growth rate and leaves a blunt tip that appears to be thicker than uncut hair;3 thus, it is uncommon for facial hair removal in females.1

Chemical Depilatories

Chemical depilatories are made as powders, pastes, creams, or lotions,1,6,8 and used for the legs, bikini area, and face.3 Examples include detergents, hair-shaft-swelling agents, adhesives, pH adjusters, and bond-breaking agents, which disrupt disulfide bonds within keratin and provide temporary hair removal.3 The most common chemical depilatories are substituted mercaptans, 2% to 10% thioglycolates, mixed with 2% to 6% of sodium hydroxide or calcium hydroxide to increase pH.3,6,8 Sulfide depilatories and sodium hydroxide depilatories are unpopular as they cause greater irritant dermatitis and skin damage.3 Depilatories are applied to hairs for 3 to 15 minutes to dissolve the hair shaft, and are then washed off with soap and water.6,8

While chemical depilatories are easy to use, painless, have a slower regrowth than shaving, and do not result in stiffness of hairs post-treatment,3 they have unpleasant odors and may cause irritant contact dermatitis due to the alkalinity and allergic contact dermatitis due to fragrances.3,7 Thus, less than 1% of patients find facial application tolerable.7 Moreover, chemical depilatories are less effective in removing darkly pigmented and coarse hair.3

Epilation

Plucking

Plucking with tweezers temporarily removes hairs in small areas, and is most effective at removing terminal as opposed to vellus hairs, with the latter tending to break near the skin surface.1,3 Plucking is simple, inexpensive, causes minimal skin damage, and affords a longer regrowth period (2 to 12 weeks).3 However, plucking does not alter hair growth rate unless hairs are in the anagen phase, and can be a tedious process, making it impractical for use over larger areas.1 Plucking can cause discomfort or pain, and its efficacy is dependent on user tolerance and technique.1 Other drawbacks include folliculitis, follicular distortion, hyperpigmentation, erythema, and scarring.6-8

Threading

Threading involves the use of a twisted loop of cotton thread, with ends held by hand and teeth,3 that is pressed against the skin to trap and pull hairs.1,6 Threading is used in men to remove cheek, ear, and forehead hairs, and in women to remove facial hair.1,3, Threading is a temporary hair removal technique widely practiced in the Middle East and dates back to antiquity, also known as fatlah in Egypt, that has gained popularity in Western cultures due to its precision in shaping eyebrows.1 Threading, however, can be painful, tedious, and typically requires an esthetician with expertise.1

Waxing

Waxing is a popular, temporary hair removal method resulting in hair-free skin for 2 to 6 weeks depending on the individual’s hair growth rate and body site.1,3,7 Waxing is commonly used for larger areas.9 Wax is composed of beeswax and rosin with additives, essential oils, chemicals, and preservatives. Hot wax is preferred over cold wax especially in beauty salons9 as the heat dilates the follicular opening to facilitate hair removal.1,3,7 Once the wax cools and hardens, the strip is removed quickly in the direction opposite of hair growth.1,9

Waxing removes both vellus and terminal hairs in large areas, and is longer-lasting than shaving or chemical depilatories as hairs are removed from the bulb.1,3 Repeated waxing can cause follicular trauma and reduce hair regrowth over time.7,9 Other adverse events include folliculitis, thermal injury, skin irritation, scars,7,9 and allergic reactions to the additives.1,7 Patients using systemic retinoids are advised not to wax due to increased risk of scarring.

Sugaring

Sugaring is an ancient hair removal technique used in the Middle East and Egypt1 involving a paste composed of sugar, lemon juice, and water10 applied to skin in the direction of hair growth, then removed in the opposite direction with cloth.10 Sugaring has a similar application to waxing, but may remove shorter hairs (1/16 inch versus ¼ inch) as water-based pastes can more easily penetrate follicles.10 Moreover, sugaring is safe (utilizes natural ingredients), cost-effective, hydrating, painless, and can be used for larger areas,7 and reduces the risk of skin redness, trauma, and scarring compared to shaving or hot waxing.10 However, sugaring may cause skin irritation and allergic reactions1 and can only remove hairs of sufficient length.

Lasers

Laser hair removal can be permanent for some individuals,11 and involves selective photothermolysis that emits a light at a specific wavelength (nm), pulse duration, and fluence, causing thermal injury without damaging the skin.1,12 Light is either directly absorbed by melanin within the hair bulb and shaft6 or by an exogenous chromophore applied topically then absorbed by the follicle.1,6,12 Lasers are more effective when the pigmented hair shaft is intact; thus, plucking and waxing are discouraged, whereas depilation (e.g., shaving) is recommended pretreatment.1,12

Laser types include the ruby laser (694 nm),1,6,13 diode laser (800 nm),1,6,13-21 alexandrite laser (795 nm),1,18,22,23 and neodymium:yttrium-aluminum-garnet (Nd:YAG) laser (1064 nm),6,12,24,25 and efficacy depends on laser fluence, spot size, number of treatments and individual factors (e.g., skin type, hair type and hormonal status).26 Lasers work best for dark, thick terminal hairs, light/fair skin, and a normal hormonal status, but are ineffective for thin vellus hairs, and white, grey, or red hairs.26 Longer wavelengths reduce epidermal damage due to poor absorption and are therefore safe and effective in darker skin types. Cooling devices should also be used to reduce skin damage.16 Adverse events include immediate erythema,13edema, first- and second- degree burns,19,20 folliculitis,22,23 skin damage, pigmentation changes, blisters, and crust formation, and are more likely to occur in darker skin types [Fitzpatrick skin type (FST) III to VI].6,24

Intense Pulsed Light (IPL) System

The IPL system is a non-laser source of polychromatic light (550 nm to 1200 nm)6 tailored to individual skin type and hair color.1,6,24 Multiple treatments are typically required,1 however, results (60% hair reduction) may last up to 12 weeks after one session.27 For optimal results, individuals should avoid tanning but should shave prior to treatment to prevent conducting thermal energy to adjacent epidermis.1 IPL is most effective in individuals with the combination of darker hair and lighter skin.1

IPL has several advantages, including lower cost compared to laser hair removal and the ability to treat large surface areas (back, chest, and legs). However, IPL is generally less effective than laser hair removal, requires more treatment sessions,28 and the IPL device is bulky, heavy, and difficult to maneuver as it houses a lamp and cooling device.18 Adverse events include pain, edema, erythema, hypopigmentation, and hyperpigmentation.1,18,24 IPL devices can emit inconsistent fluence and wavelengths from pulse to pulse, making it difficult to predict efficacy.18

Electrolysis

Electrolysis is a permanent method of hair removal,1,6,8 but patients with hirsutism will experience conversion of vellus to terminal hairs in treatment areas. The three types of electrolysis [1) galvanic (direct current) electrolysis, 2) thermolysis (alternating current), and 3) combination/blend method] all involve inserting a probe to deliver electric currents that destroy and prevent regrowth of hair follicles.1

Galvanic electrolysis treatment is slow (15 seconds to 3 minute application per hair) with multiple treatments required; however, it can reduce the number of active hair follicles by 80% to 90%.1 This technique is tedious, time-consuming, painful, and can cause post-inflammatory hyperpigmentation and scarring, and is not recommended for larger areas requiring hair removal.8 In contrast, thermolysis is faster than galvanic electrolysis due to a shorter skin contact time, but generally less effective – hair has been found to regrow in 20% to 40% of follicles post-treatment.1 The blend method (combination of galvanic electrolysis and thermolysis) is considered the most effective form, as it is as fast as thermolysis and less painful than galvanic electrolysis.1

Adverse events of electrolysis depend on current type, duration, and intensity, but include pain, scarring/keloid formation in susceptible patients, and post-inflammatory hypo- or hyperpigmentation. Topical anesthetics can be offered before treatment, however maintaining sensation is preferred as pain is related to skin damage.6 Erythema and edema are common but transient, and crusting or follicular nodules may form with repeated insertion of a needle into the same follicle. There is also risk of local infection if instruments are not cleaned properly; operators should wear gloves at all times and apply antibacterial ointment to the area post-treatment.6 The efficacy of electrolysis depends largely on the operator’s skills, and unfortunately there is no standardization of licensure to practice this technique.1,6

Photodynamic Therapy (PDT)

PDT involves the application of a topical photosensitizer6 and subsequent exposure to nonionizing radiation of red light (635 nm) through a projector, broadband light device, or laser.29 Light is absorbed by a photosensitizer, subsequently forming singlet oxygen that causes lipid peroxidation of follicular cell membranes and protein damage,6,8 resulting in phototoxic effects on hairs.30 The most common topical agents used for PDT are 10% or 20% topical 5-aminolevulinic acid (5-ALA) and methyl aminolevulinate – prodrugs that lead to the formation of a photosensitizer, protoporphyrin IX (PPIX). PDT treatment duration is dependent on the incubation time of 5-ALA, which should be sufficient to allow for its conversion to PPIX. The incubation period for 5-ALA is typically 3 hours29 followed by brief light exposure.31 PDT can be used in all skin and hair types as its mechanism of action is independent of melanin concentration and has minimal side-effects.30 Uebelhoer et al. described a 40% hair reduction at 6 months of wax epilated areas after ALA application for 3 hours with one treatment of irradiation with continuous wave 630 nm red light.32 Moreover, in a recent study by Comacchi et al. on the use of PDT in idiopathic hirsutism and hypertrichosis, two to five treatments (with a 1 month period between treatments) led to a 75% hair reduction at 12 months.30 Since PDT is primarily used to treat cutaneous malignancy, its use in hair removal is limited and further investigations are required.8,12

Other

Topical Eflornithine Hydrochloride

Eflornithine hydrochloride 13.9% cream (Vaniqa®), is a topical prescription medication that is not meant to be used alone and should be combined with another hair removal technique. Topical eflornithine does not fall under epilation or depilation as it does not remove hair but rather slows facial hair growth, and inhibition of ornithine decarboxylase is the postulated mechanism of action. If applied twice daily at least 8 hours apart, results may be seen as early as 4 to 8 weeks. Adverse event rates include acne, folliculitis, stinging or burning, dry skin, itching, tingling, redness or irritation, indigestion, rash, and dizziness. Patients should consult their physician before using eflornithine if pregnant, planning pregnancy, or breastfeeding.2

Conclusion

This article is a general overview of hair removal practices, which have evolved from utilizing waxes and blades, to advanced lasers and electrolysis, with further advancements still being studied.1 Residual, unwanted hair is a common problem for many individuals and traditional methods of hair removal (e.g., shaving and waxing) have provided temporary solutions and unsatisfactory results. Laser therapy is a safe modality that can produce permanent results in some individuals.11,12 Electrolysis is a permanent hair removal method but can be tedious and associated with several adverse events. A relatively recent FDA and Health Canada approved treatment, eflornithine hydrochloride 13.9% cream, can be used in combination with another hair removal technique to slow the rate of facial hair growth. Importantly, studies examining hair removal efficacy are limited to individuals with darker hair and fairer skin, whereby precautionary measures such as cooling devices are recommended for safe treatment. Further research is required to develop safe and effective treatments for those with lighter-colored hair.12

References



  1. Fernandez AA, Franca K, Chacon AH, et al. From flint razors to lasers: a timeline of hair removal methods. J Cosmet Dermatol. 2013 Jun;12(2):153-62.

  2. Vaniqa® (eflornithine hydrochloride) cream, 13.9% [Prescribing information]. Revised January 2018. Allergan USA, Inc., Madison, NJ. Available at: https://media.allergan.com/actavis/actavis/media/allergan-pdf documents/productprescribing/20180128-VANIQA-USPI-73326US11.pdf. Accessed August 10, 2021.

  3. Ramos-e-Silva M, de Castro MC, Carneiro LV, Jr. Hair removal. Clin Dermatol. 2001 Jul-Aug;19(4):437-44.

  4. Rietzler M, Maurer M, Siebenhaar F, et al. Innovative approaches to avoid electric shaving-induced skin irritation. Int J Cosmet Sci. 2016 Jun;38 Suppl 1:10-6.

  5. Retallack GB. Razors, shaving and gender construction: an inquiry into the material culture of shaving. MCR [Internet]. 1999 Jan 01;49(1). Available from: https://journals.lib.unb.ca/index.php/MCR/article/view/17782. Accessed August 12, 2021.

  6. Olsen EA. Methods of hair removal. J Am Acad Dermatol. 1999 Feb;40(2 Pt 1):143-55; quiz 56-7.

  7. Wanitphakdeedecha R, Alster TS. Physical means of treating unwanted hair. Dermatol Ther. 2008 Sep-Oct;21(5):392-401.

  8. Ort RJ, Anderson RR. Optical hair removal. Semin Cutan Med Surg. 1999 Jun;18(2):149-58.

  9. Khanna N, Chandramohan K, Khaitan BK, Singh MK. Post waxing folliculitis: a clinicopathological evaluation. Int J Dermatol. 2014 Jul;53(7):849-54.

  10. Lim V, Simmons BJ, Maranda EL, et al. Sugaring-Modern Revival of an Ancient Egyptian Technique for Hair Removal. JAMA Dermatol. 2016 Jun 1;152(6):660.

  11. Altunel CT, Kartal SP. Reconceptualizing the permanence of alexandrite laser hair removal results: a long-term follow-up study. J Cosmet Laser Ther. 2020 Nov 16;22(6-8):271-4.

  12. Dierickx CC. Hair removal by lasers and intense pulsed light sources. Dermatol Clin. 2002 Jan;20(1):135-46.

  13. Elman M, Klein A, Slatkine M. Dark skin tissue reaction in laser assisted hair removal with a long-pulse ruby laser. J Cutan Laser Ther. 2000 Mar;2(1):17-20.

  14. Adrian RM, Shay KP. 800 nanometer diode laser hair removal in African American patients: a clinical and histologic study. J Cutan Laser Ther. 2000 Dec;2(4):183-90.

  15. Barolet D. Low fluence-high repetition rate diode laser hair removal 12-month evaluation: reducing pain and risks while keeping clinical efficacy. Lasers Surg Med. 2012 Apr;44(4):277-81.

  16. Campos VB, Dierickx CC, Farinelli WA, et al. Hair removal with an 800-nm pulsed diode laser. J Am Acad Dermatol. 2000 Sep;43(3):442-7.

  17. Campos VB, Dierickx CC, Farinelli WA, et al. Ruby laser hair removal: evaluation of long-term efficacy and side effects. Lasers Surg Med. 2000 26(2):177-85.

  18. Gan SD, Graber EM. Laser hair removal: a review. Dermatol Surg. 2013 Jun;39(6):823-38.

  19. Greppi I. Diode laser hair removal of the black patient. Lasers Surg Med. 2001 28(2):150-5.

  20. Royo J, Urdiales F, Moreno J, et al. Six-month follow-up multicenter prospective study of 368 patients, phototypes III to V, on epilation efficacy using an 810-nm diode laser at low fluence. Lasers Med Sci. 2011 Mar;26(2):247-55.

  21. Wheeland RG. Simulated consumer use of a battery-powered, hand-held, portable diode laser (810 nm) for hair removal: A safety, efficacy and ease-of-use study. Lasers Surg Med. 2007 Jul;39(6):476-93.

  22. Garcia C, Alamoudi H, Nakib M, et al. Alexandrite laser hair removal is safe for Fitzpatrick skin types IV-VI. Dermatol Surg. 2000 Feb;26(2):130-4.

  23. Kutlubay Z. Alexandrite laser hair removal results in 2359 patients: a Turkish experience. J Cosmet Laser Ther. 2009 Jun;11(2):85-93.

  24. Fayne RA, Perper M, Eber AE, et al. Laser and Light Treatments for Hair Reduction in Fitzpatrick Skin Types IV-VI: A Comprehensive Review of the Literature. Am J Clin Dermatol. 2018 Apr;19(2):237-52.

  25. Goldberg DJ, Littler CM, Wheeland RG. Topical suspension-assisted Q-switched Nd:YAG laser hair removal. Dermatol Surg. 1997 Sep;23(9):741-5.

  26. Haedersdal M, Beerwerth F, Nash JF. Laser and intense pulsed light hair removal technologies: from professional to home use. Br J Dermatol. 2011 Dec;165 Suppl 3:31-6.

  27. Gold MH, Bell MW, Foster TD, et al. Long-term epilation using the EpiLight broad band, intense pulsed light hair removal system. Dermatol Surg. 1997 Oct;23(10):909-13.

  28. Thaysen-Petersen D, Bjerring P, Dierickx C, et al. A systematic review of lightbased home-use devices for hair removal and considerations on human safety. J Eur Acad Dermatol Venereol. 2012 May;26(5):545-53.

  29. Touma DJ, Gilchrest BA. Topical photodynamic therapy: a new tool in cosmetic dermatology. Semin Cutan Med Surg. 2003 Jun;22(2):124-30.

  30. Comacchi C, Bencini PL, Galimberti MG, et al. Topical photodynamic therapy for idiopathic hirsutism and hypertrichosis. Plast Reconstr Surg. 2012 Jun;129(6):1012e-4e.

  31. Shin H, Yoon JS, Koh W, et al. Nonpigmented hair removal using photodynamic therapy in animal model. Lasers Surg Med. 2016 Oct;48(8):748-62.

  32. Uebelhoer NS, Dover JS. Photodynamic therapy for cosmetic applications. Dermatol Ther. 2005 May-Jun;18(3):242-52.


Purchase Article PDF for $1.99

]]>
Rosacea: An Update in Diagnosis, Classification and Management https://www.skintherapyletter.com/rosacea/update-diagnosis-management/ Sun, 01 Aug 2021 17:00:15 +0000 https://www.skintherapyletter.com/?p=12670 Cindy Na-Young Kang, BMSc1, Monica Shah, BSc1, Jerry Tan, MD, FRCPC2,3

1Faculty of Medicine, University of Toronto, Toronto, ON, Canada
2Windsor Clinical Research, Windsor, ON, Canada
3Western University, Schulich School of Medicine, Windsor, ON, Canada

Conflict of interest:
Cindy Kang and Monica Shah have no conflicts of interest to disclose. Jerry Tan has been a consultant, investigator and/or speaker for Almirall, Bausch, Boots/Walgreens, Cipher, Galderma, L’Oréal, Promius, Sun and Vichy. Disclaimers: This manuscript is an original submission. Views expressed in the submitted article are our own and not official positions of our institutions.

Abstract:
The diagnosis and classification of rosacea has been modified to reflect presenting features. On exclusion of differentials, the diagnosis of rosacea is based on the presence of either (1) phymatous changes, or (2) centrofacial persistent erythema. In their absence, diagnosis can be established by presence of any two of: flushing/transient erythema, papules and pustules, telangiectases, or ocular manifestations. Management of rosacea depends on presenting feature(s), their severity, and impact. General management includes gentle skin care, sun protection, and trigger avoidance. Evidence-based treatment recommendations include topical brimonidine and oxymetazoline for persistent erythema; topical azelaic acid, ivermectin, metronidazole, minocycline and oral doxycycline, tetracycline and isotretinoin for papules and pustules; vascular lasers and light devices for telangiectases; and omega-3 fatty acids and cyclosporine ophthalmic emulsion for ocular rosacea. While surgical or laser therapy can be considered for clinically noninflamed phyma, there are no trials on their utility. Combination therapies include topical brimonidine with topical ivermectin, or topical metronidazole with oral doxycycline. Topical metronidazole, topical ivermectin, and topical azelaic acid are appropriate for maintenance therapy. In conclusion, the updated phenotype approach, based on presenting clinical features, is the foundation for current diagnosis, classification, and treatment of rosacea.

Key Words:
alpha-adrenergic agonist, anti-parasitic, antibiotic, diagnosis, dicarboxylic acid, erythema, laser therapy, management, phenotype approach, phyma, retinoids, rosacea, telangiectasia

Table of Content:

  1. Introduction
  2. Quality of Evidence
  3. Diagnosis
  4. Evaluation and Differential Diagnosis
  5. Associated Comorbidities
  6. Management
  7. Conclusion


Introduction

Rosacea is a chronic inflammatory dermatosis affecting the centrofacial region (cheeks, chin, nose, and central forehead), with a prevalence of 5.5% of the adult population.1 While rosacea has been considered to primarily affect fair-skinned individuals, this may be due to difficulty in detecting facial redness in darker skin types. Nevertheless, rosacea patients of Asian, Hispanic, or African ancestry have been described in literature.2 Women are more likely to develop rosacea, however, when present in men, the disease tends to be more severe.3 The typical age of onset is after 30 years old;4,5 however, ocular rosacea can occur as early as 22 months of age.6 Pediatric rosacea is rare and is usually associated with a family history of the condition.6,7 Ocular manifestations of rosacea occur in more than 50% of rosacea patients.8

There are several flare triggers in patients with rosacea including temperature changes, heat, cold, exercise, ultraviolet radiation, spicy food, and alcoholic beverages.9 Microbes have also been implicated in the pathophysiology of rosacea, including Demodex species, Bacillus oleronius, Staphylococcus epidermidis, Helicobacter pylori, and Bartonella quintana.10 The immune system, neurogenic inflammation, and vascular hyperreactivity are central to the pathophysiology of rosacea. Specifically, innate immune system activation via toll-like receptor 2 (TLR2), transient receptor potential (TRP) ion channels, and proinflammatory cytokines contribute to clinical manifestations of rosacea.11

Rosacea has a significant impact on the emotional, social, and occupational wellbeing of affected individuals. Due to the altered facial features characterising this disease, patients with rosacea frequently experience stigmatization. Consequently, they can suffer from depression and anxiety and tend to avoid social situations.12

The phenotype approach establishes diagnosis and management based on the presenting features of the individual.13 While previously classified according to subtypes, each potentially comprising multiple signs and symptoms, this nomenclature should be abandoned as it limits the ability to study, evaluate, and treat individual features.13 The phenotype approach more accurately addresses patient features and can facilitate focused treatment on those of greatest severity and impact.13 Thus, this review provides an overview of the updated phenotype approach in the diagnosis and management of rosacea.


Quality of Evidence

The PubMed database was searched for systematic reviews, meta-analyses, and guidelines on the diagnosis, classification, and management of rosacea, with a focus on phenotypes. Key words included “rosacea” and “diagnosis” or “classification” or “management” or “guidelines” or “treatment”. There were no limits on age, sex, or nationality or year of publication. Only studies published in English on human subjects were included.


Diagnosis

The diagnosis of rosacea is clinical and based on specific features according to the ROSacea COnsensus expert panel (ROSCO)13 and the National Rosacea Society (NRS).14 On clinical exclusion of other conditions with similar presenting features, the diagnosis of rosacea is established with either: (1) phymatous changes, or (2) centrofacial persistent erythema (Table 1).13,15 In their absence, diagnosis can be established by the presence of any two of the following major features: flushing/transient erythema, papules and pustules, telangiectases (Table 1), or ocular rosacea (Table 2).13,15 Minor features, such as burning, stinging, dry sensation of the skin, or edema are not diagnostic of rosacea (Table 1).15 The diagnosis of rosacea in darker skin types (Fitzpatrick phototypes V and VI) is difficult as erythema and telangiectasia may not be readily visible, and a high level of suspicion based on minor features is required. A less common variant of rosacea is granulomatous rosacea, with multiple brown, yellow, or red cutaneous papules of uniform size. Occasionally, skin biopsy may be useful for diagnostic support.13

Cutaneous Rosacea Features Description
Diagnostic features
Phymatous changes Facial skin thickening due to fibrosis and/or sebaceous glandular hyperplasia. Most commonly affects the nose, where it can impart a bulbous appearance.
Persistent erythema Background ongoing centrofacial redness. May periodically intensify in response to variable triggers. In darker skin phototypes (V and VI), erythema may be difficult to detect visually.
Major features
Flushing/transient erythema Temporary increase in centrofacial redness, which may include sensations of warmth, heat, burning and/or pain.
Papules and pustules Red papules and pustules, usually in the centrofacial area. Some may be larger and deeper.
Telangiectases Visible vessels in the centrofacial region but not only in the alar area.
Minor features
Burning sensation of the skin An uncomfortable or painful feeling of heat, typically in the centrofacial region.
Stinging sensation of the skin An uncomfortable or painful sharp, pricking sensation, typically in the centrofacial region.
Dry sensation of the skin Skin that feels rough. May be tight, scaly and/or itchy.
Edema Localized facial swelling. Can be soft or firm (nonpitting) and may be self-limited in duration or persistent.

Table 1: Descriptions of cutaneous rosacea features by consensus

Consensus of an expert panel of 19 dermatologists from Argentina (n = 1), Brazil (n = 1), Canada (n = 1), France (n = 1), Germany (n = 2), India (n = 1), Italy (n = 1), the Netherlands (n = 1), Qatar (n = 1), Singapore (n = 1), South Africa (n = 1), the U.K. (n = 1) and the U.S.A. (n = 6); and two ophthalmologists from Germany (n = 1) and the U.S.A (n = 1). Some panellists abstained when their clinical expertise did not extend to a particular subject.
Reprinted from Schaller M. et al., 2019, Br J Dermatol, 176, p. 1273.15


 

Ocular Rosacea Features Description
Lid margin telangiectasia Visible vessels around the eyelid margins. May be difficult to detect visually in darker skin phototypes (V and VI).
Blepharitis Inflammation of the eyelid margin, most commonly arising from Meibomian gland dysfunction.
Keratitis Inflammation of the cornea that can lead to defects and, in the most severe cases, vision loss.
Conjunctivitis Inflammation of the mucous membranes lining the inner surface of the eyelids and bulbar conjunctiva. Typically associated with injection or vascular congestion and conjunctival oedema.
Anterior uveitis Inflammation of the iris and/or ciliary body.

Table 2: Descriptions of ocular rosacea features

Note that these are recommendations rather than consensus due to n = 2. Both ophthalmologists voted ‘Agree’ or ‘Strongly agree’ to the descriptions.
Consensus of an expert panel of 19 dermatologists from Argentina (n = 1), Brazil (n = 1), Canada (n = 1), France (n = 1), Germany (n = 2), India (n = 1), Italy (n = 1), the Netherlands (n = 1), Qatar (n = 1), Singapore (n = 1), South Africa (n = 1), the U.K. (n = 1) and the U.S.A. (n = 6); and two ophthalmologists from Germany (n = 1) and the U.S.A (n = 1). Some panellists abstained when their clinical expertise did not extend to a particular subject.
Reprinted from Schaller M. et al., 2019, Br J Dermatol, 176, p. 1274.15



Evaluation and Differential Diagnosis

Differential diagnoses of rosacea depend on the clinical feature(s) present (Table 3). Examples include contact dermatitis, photodermatitis, seborrheic dermatitis, and systemic lupus erythromatous for facial erythema; perimenopausal flushing, emotional flushing, carcinoid syndrome, and mastocytosis for flushing; and acne vulgaris and folliculitis for papules and pustules.16 Exclusion of mimics can be established by taking an adequate history, performing a directed physical evaluation for distinguishing features, and further testing as required.

Distinguishing Clinical Feature Differential Diagnosis Other Clinical Features
Facial erythema Contact dermatitis Itching, eczematous features
Photodermatitis Tender erythema in photo-distribution
Seborrheic dermatitis Scaly erythema at frontal hairline, scalp, eyebrows, and nasolabial folds
Systemic lupus erythematosus (SLE) Cheilitis and other manifestations of SLE
Flushing Perimenopausal flushing Transient episodes of intense heat sensation
Flushing of chest, head, and neck
Profuse drenching sweats
Episodes lasts 3-5 minutes up to 20 times a day and are frequently followed by chills accompanied by palpitations and sense of anxiety
Emotional flushing Episodes of flushing are correlated with emotional upset or feelings of embarrassment
Carcinoid syndrome Associated diarrhea, wheezing, and abdominal pain
Mastocytosis Associated diarrhea, abdominal pain, and musculoskeletal pain
Papules and pustules Acne vulgaris Presence of comedones
Folliculitis Monomorphous lesions, no centrofacial erythema

Table 3: Differential diagnoses of rosacea

Information from Asai et al., 2016,16 Ogé et al., 2015,19 Scheinfeld et al., 2010,55 and Izikson et al., 2006.56



Associated Comorbidities

Associations between rosacea and metabolic, cardiovascular, gastrointestinal (GI), neurologic, and psychiatric diseases have been established (Table 4).17 Some of these share common innate inflammatory elements with rosacea, such as macrophage and macrophage-derived mediators, reactive oxygen species, matrix metalloproteinases, interleukin-1b (IL-1b), and tumor-necrosis-factor (TNF).18

 

Associated Comorbidity OR 95% CI P-Value Reference
Metabolic
Type 1 diabetes 2.59 1.41-4.73 <0.002 Egeberg et al., 201657
Dyslipidemia 1.41 1.36-1.46 <0.008 Hua et al., 201558
Cardiovascular
Hypertension 1.17 1.12-1.21 <0.008 Hua et al., 201558
Coronary artery disease 1.35 1.29-1.41 <0.008 Hua et al., 201558
Gastrointestinal
Ulcerative colitis 1.65 1.43-1.90 N/A Spoendlin et al., 201659
Crohn’s disease 1.49 1.25-1.77 N/A Holmes et al., 201818
Inflammatory bowel disease 2.17 1.59-2.97 <0.001 Kim et al., 201760
Celiac disease 2.03 1.35-3.08 <0.001 Egeberg et al., 201657
Gastroesophageal reflux disease 4.2 1.70-10.20 <0.002 Rainer et al., 201561
Neurologic/psychiatric
Depression N/A N/A N/A Wu et al., 201862
Migraine 1.18 1.13-1.24 N/A Spoendlin et al., 201363

Table 4: Rosacea and associated comorbidities

CI = confidence interval, N/A = not available, OR = odds ratio, P = probability



Management

The goals of rosacea treatment are to reduce the severity of features and the frequency and intensity of flares.13 General management includes routine skin care: gentle cleansers, moisturizers, sun protection, and avoidance of triggers.16,19 Specific treatments should be targeted at clinical features (Table 5 on pages 7-8). If multiple features are present, combination treatment should be considered.16 The phenotype approach allows for such feature-based treatment according to the severity and impact of the presentation.20 An updated systematic review of rosacea treatment based on the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework, is outlined below (Table 5).21

 

Treatment Dose Efficacy Certainty of Evidence for Efficacy Rate of Adverse Events Certainty of Evidence for Adverse Events Reference
Persistent erythema
Topical brimonidine 0.33% gel Compared to vehicle/placebo; RR 2.11, 95% CI 1.60-2.78, P < 0.001, I2 = 0%; NNTB 5, 95% CI 3-7 High Equal to vehicle/placebo; RR 1.29, 95% CI 0.98-1.69, I2 = 0% Moderate Fowler et al., 201322
Topical oxymetazoline 1% cream Compared to vehicle/placebo; RR 1.65, 95% CI 1.23–2.21, P < 0.001, I2 = 0%; NNTB 11, 95% CI 7-27 Moderate Equal to vehicle/placebo; RR 1.32, 95% CI 0.97-1.78, I2 = 13 Moderate Baumann et al., 201823
Kircik et al., 201824
Papules and pustules
Dicarboxylic acids
Topical azelaic acid 15% foam Compared to vehicle/placebo; RR 1.40, 95% CI 1.28-1.53, P < 0.001, I2 = 0%; NNTB 6, 95% CI 5-8 High Equal to vehicle/ placebo; RR 1.29, 95% CI 0.92-1.81, I2 = 46% Moderate Draelos et al., 201327
Draelos et al., 201528
Topical azelaic acid is superior to topical metronidazole 15% gel azelaic acid, 0.5% gel metronidazole Mean nominal lesion count reduction –12.9 vs. –10.7, P = 0.003 Moderate; non-reproducible by other RCTs N/A Moderate Elewski et al., 200329
Antiparasitics
Topical ivermectin 1% cream Compared to vehicle/placebo; RR 1.84, 95% CI 1.62-2.09, P < 0.001, I2 = 0%; NNTB 3, 95% CI 3-4 High Equal to vehicle/placebo; RR 0.83, 95% CI 0.54-1.28, I2 = 26% Moderate Stein et al., 201432
Topical ivermectin is superior to topical metronidazole 1% cream ivermectin, 0.75% cream metronidazole Topical ivermectin compared to topical metronidazole; RR 1.14, 95% CI 1.07-1.22, P <0.001; NNTB 10, 95% CI 7-17 Moderate N/A N/A Taieb et al., 201533
Retinoids
Oral isotretinoin 0.25 mg/kg, 0.30 mg/kg Compared to vehicle/placebo; RR 5.51, 95% CI 2.37-12.83, P < 0.001; NNTB 2, 95% CI 2-3 High Higher than vehicle/placebo; RR 1.59, 95% CI 1.12-2.24, P = 0.009, NNTH 4, 95% CI 2-11 Moderate Sbidian et al., 201634
Antibiotics
Topical metronidazole 1% cream Compared to vehicle/placebo; RR 1.98, 95% CI 1.29-3.02, P = 0.002 Moderate Equal to vehicle/placebo; RR 1.19, 95% CI 0.94-1.51, I2 = 0% Moderate Bjerke et al., 198936
Breneman et al., 199837
Nielsen, 198338
Topical minocycline 1.5% or 3% foam Compared to vehicle/placebo; MD – 13.30, 95% CI -15.82 to -10.78, P < 0.001 Moderate Higher than vehicle/placebo; RR 1.47, 95% CI 1.05-2.04, P = 0.02; NNTH 5, 95% CI 3-32 Moderate Mrowietz et al., 201839
Oral doxycycline 40 mg MR Compared to vehicle/placebo; RR 1.69, 95% CI 1.26-2.28, P < 0.001, I2 = 0; NNTB 9, 95% CI 6-20 Moderate Equal to vehicle/placebo; RR 1.27, 95% CI 1.08-1.49 Moderate Di Nardo et al., 201640
Oral tetracycline 250 mg N/A Low N/A Moderate Marks, 197141
Sneddon, 196642
Oral doxycycline is just as effective as oral minocycline 40 mg doxycycline, 100 mg minocycline Oral doxycycline compared to oral minocycline; RR 1.10, 95% CI 0.72-1.67 Moderate Equal to minocycline; RR 1.17, 95% CI 0.83-1.65 Low van der Linden et al., 201744
Oral doxycycline is similar to oral azithromycin 100 mg doxycycline, 500 mg three times a week then tapered azithromycin Mean nominal lesion count reduction N/A, 95% CI –30.1 to –32.4, P = 0.771 Very low N/A N/A Akhyani et al., 200845
Oral doxycycline (low dose) is similar to oral doxycycline (high dose) 40 mg, 100 mg doxycycline N/A Low N/A N/A Del Rosso et al., 200846
Telangiectasias
PDL, Nd:YAG, IPL N/A N/A Low-to-moderate N/A N/A van Zuuren et al., 201921
Clinically non-inflamed phyma
Ablative laser surgery, Er:YAG modalities, electrosurgery, cryosurgery N/A N/A No RCTs but recommended by experts N/A N/A Ogé et al., 201519
Clinically inflamed phyma
Oral doxycycline N/A N/A No RCTs but recommended by experts N/A N/A Ogé et al., 201519
Oral isotretinoin N/A N/A No RCTs but recommended by experts N/A N/A Ogé et al., 201519
Ocular rosacea
Omega-3 fatty acids 180 mg eicosapentaenoic acid and 120 mg docosahexaenoic acid N/A Moderate N/A N/A Bhargava et al., 201647
Cyclosporine ophthalmic emulsion is superior to artificial tears 0.05% cyclosporine ophthalmic emulsion N/A Low Similar to artificial tears; N/A Low Schechter et al., 200948
Cyclosporine ophthalmic emulsion is superior to artificial tears 0.05% cyclosporine ophthalmic emulsion N/A Low Similar to artificial tears; N/A Low Schechter et al., 200948
Cyclosporine ophthalmic emulsion is superior to oral doxycycline 0.05% cyclosporine ophthalmic emulsion, 100 mg doxycycline N/A Low N/A N/A Arman et al., 201549
Combination therapies
Topical brimonidine with topical ivermectin 0.33% gel brimonidine, 1% topical ivermectin RR 1.84, 95% CI 1.38-2.46, P < 0.001; NNTB 3, 95% CI 2-5 N/A N/A N/A Gold et al., 201750
Topical metronidazole with oral doxycycline is superior to topical metronidazole alone 1% gel metronidazole, 40 mg MR doxycycline N/A N/A N/A N/A Fowler, 200751
Oral minocycline with topical azelaic acid is just as effective as oral
minocycline without azelaic acid
45 mg minocycline, 15% gel azelaic acid N/A Moderate N/A N/A Jackson et al., 201352
Topical clindamycin phosphate with tretinoin 1.2% clindamycin phosphate, 0.025% gel tretinoin N/A Moderate Higher than vehicle/placebo; N/A Moderate Chang et al., 201253
Maintenance therapies
Topical metronidazole 0.75% gel for papules and pustules 0.75% gel N/A N/A N/A N/A Stein Gold et al., 201454
Topical ivermectin for papules and pustules 1% cream N/A N/A N/A N/A Stein Gold et al., 201454
Topical azelaic acid for papules and pustules 15% gel N/A N/A N/A N/A Stein Gold et al., 201454

Table 5: Treatment recommendations and certainty of evidence

CI = confidence interval, Er:YAG = erbium-doped yttrium aluminium garnet, I2 = heterogeneity, IPL = intense pulsed light, MD = mean difference, MR = modified release, N/A = not available, Nd:YAG = neodymium-doped yttrium aluminum garnet, NNTB = number needed to benefit, NNTH = number needed to harm, PDL = pulsed dye laser, P = probability, RCT = randomized controlled trial, RR = relative risk
Information from van Zuuren et al., 2019.21


Flushing/Transient Erythema

No randomized controlled trials available.

Persistent Erythema

Evidence to support the efficacy and safety in transient reduction of persistent erythema was derived from two randomized vehicle-controlled trials for topical brimonidine 0.33% gel22 and topical oxymetazoline 1% cream.23,24 Quality of evidence for efficacy was reported as high-certainty for brimonidine 0.33% gel and moderate-certainty for oxymetazoline 1% cream.21 Adverse event frequency was similar to vehicle for both brimonidine22 (moderate-certainty evidence)21 and for oxymetazoline23,24 (moderate-certainty evidence).21 In both, there is ongoing concern about the potential risk of worsening erythema with repeated use.25,26

Papules and Pustules

Dicarboxylic Acids

Topical azelaic acid 15% foam twice daily is a safe and effective treatment for papules and pustules27,28 (high-certainty evidence)21 with an adverse event frequency similar to vehicle27,28 (moderate-certainty evidence)21 according to two randomized vehicle-controlled trials.27,28

Another randomized controlled trial showed that azelaic acid 15% gel may be more effective in reducing mean nominal lesion count than metronidazole 0.75% gel29 (moderate-certainty evidence).21 These differences, however, were not reproducible and were considered to be unimportant.30,31

Antiparasitics

Topical ivermectin 1% cream once daily is more effective in the treatment of papules and pustules compared to vehicle32 (high-certainty evidence),21 and compared to metronidazole 0.75% cream twice daily33 (moderate-certainty evidence).21 Adverse event rates for topical ivermectin were similar compared to vehicle32 (moderate-certainty evidence)21 and topical metronidazole.33

Retinoids

In two randomized controlled trials, low-dose oral isotretinoin 0.25 mg/kg and low-dose oral isotretinoin 0.30 mg/kg were more effective than placebo34 (high-certainty evidence)21 and oral doxycycline (100 mg for 14 days, then tapered to 50 mg)35 (moderate-certainty evidence),21 respectively. The frequency of adverse events was higher for isotretinoin compared to placebo34 (moderate-certainty evidence),21 but similar to oral doxycycline35 (moderate-certainty evidence).21

Antibiotics

Several randomized vehicle- or placebo-controlled trials demonstrated the efficacy of topical metronidazole 1% cream,36-38 topical minocycline 1.5% and 3% foam,39 oral doxycycline 40 mg modified-release (MR),40 and oral tetracycline 250 mg twice daily41,42 in the treatment of papules and pustules. The quality of evidence for efficacy was moderate-certainty for the first three treatments, but low-certainty for oral tetracycline.21 Adverse event frequency was similar to vehicle/placebo for topical metronidazole36-38 (moderate-certainty evidence),21 oral doxycycline,40 and oral tetracycline,41,42 but higher than vehicle for topical minocycline39 (moderate-certainty evidence).21 Topical clindamycin 1% cream or gel was found to be no more effective than vehicle for any outcome43 (low-to-moderate certainty evidence).21 Compared to oral doxycycline 40 mg MR, oral minocycline 100 mg is similarly effective44 (moderate-certainty evidence)21 with no differences in the rate of adverse events44 (low-certainty evidence).21 Compared to oral doxycycline 100 mg, oral azithromycin 500 mg three times a week then tapered is similarly effective in reducing lesion counts45 (very low-certainty evidence).21 Finally, 40 mg MR doxycycline is as effective as 100 mg with fewer side effects.46

Telangiectases

There is low-to-moderate certainty evidence that long pulsed dye laser (PDL), neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, and intense pulsed light (IPL) therapy reduce telangiectasia.21

Clinically Non-inflamed Phyma

Physical modalities, such as ablative laser surgery using carbon dioxide or erbium-doped yttrium aluminium garnet (Er:YAG) modalities, electrosurgery, or cryosurgery, may improve clinically noninflamed phyma.16 However, it is difficult to determine their effectiveness due to the lack of evaluation by randomized controlled trials.16,21

Clinically Inflamed Phyma

While there are no randomized controlled trials evaluating the efficacy of treatments for clinically inflamed phyma, oral doxycycline or oral isotretinoin are still recommended.16,21

Ocular Rosacea

One randomized placebo-controlled trial supported omega-3 fatty acids (180 mg eicosapentaenoic acid and 120 mg docosahexaenoic acid) one capsule twice daily47 (moderate-certainty evidence)21 in the treatment of ocular rosacea. Another randomized controlled trial supported cyclosporine ophthalmic emulsion 0.05% twice daily versus artificial tears48 (low-certainty evidence)21 and versus oral doxycycline 100 mg twice daily for the first month followed by 2 months once daily49 (low-certainty evidence).21 For the cyclosporine ophthalmic emulsion, there were no differences in the rate of adverse events compared to artificial tears (low-certainty evidence).21 For severe ocular rosacea or when there is diagnostic uncertainty, referral to an ophthalmologist should be arranged.21

Combination Therapies

Treatment combinations may address several different clinical features of rosacea. For example, compared to vehicle, topical brimonidine 0.33% gel with topical ivermectin 1% cream can effectively reduce both erythema and papules and pustules.50 Compared to metronidazole 1% gel alone, metronidazole 1% gel with oral doxycycline 40 mg MR can reduce lesion counts to a greater extent.51

Finally, randomized controlled trials reported no difference in efficacy between oral minocycline 45 mg with or without topical azelaic acid 15% gel52 (moderate-certainty evidence)21 or between topical clindamycin phosphate 1.2% with tretinoin 0.025% gel compared to placebo53 (moderate-certainty evidence).21 However, in the latter, there was a higher rate of adverse events in the topical clindamycin/tretinoin group compared to placebo (moderate-certainty evidence).21

Maintenance Therapies

Topical metronidazole 0.75% gel, ivermectin 1% cream, and azelaic acid 15% gel are reported as effective and safe for maintenance therapy of papules and pustules.21,54


Conclusion

The diagnosis and classification of rosacea has evolved to a phenotype approach to accurately address the clinical features presenting in an individual and to advance epidemiological and clinical trials research.13 This review details the rosacea phenotype approach to diagnosis and classification, and summarizes current evidence-based treatment recommendations for individual features. There is no singularly effective treatment for all features of rosacea. There is an unmet need for high quality investigations for treatment of inflamed phyma, flushing/transient erythema, and ocular rosacea.

References



  1. Gether L, Overgaard LK, Egeberg A, et al. Incidence and prevalence of rosacea: a systematic review and meta analysis. Br J Dermatol. 2018 Aug;179(2):282-9.

  2. Halder RM, Brooks HL, Callender VD. Acne in ethnic skin. Dermatol Clin. 2003 Oct;21(4):609-15.

  3. Powell FC. Clinical practice. Rosacea. N Engl J Med. 2005 Feb 24;352(8):793- 803. [PubMed]

  4. Berg M, Liden S. An epidemiological study of rosacea. Acta Derm Venereol. 1989 69(5):419-23.

  5. McAleer MA, Fitzpatrick P, Powell FC. Papulopustular rosacea: prevalence and relationship to photodamage. J Am Acad Dermatol. 2010 Jul;63(1):33-9.

  6. Donaldson KE, Karp CL, Dunbar MT. Evaluation and treatment of children with ocular rosacea. Cornea. 2007 Jan;26(1):42-6.

  7. Lacz NL, Schwartz RA. Rosacea in the pediatric population. Cutis. 2004 Aug;74(2):99-103.

  8. Starr PA, Macdonald A. Oculocutaneous aspects of rosacea. Proc R Soc Med. 1969 Jan;62(1):9-11.

  9. Buddenkotte J, Steinhoff M. Recent advances in understanding and managing rosacea. F1000Res. 2018 7.

  10. Kelhala HL, Palatsi R, Fyhrquist N, et al. IL-17/Th17 pathway is activated in acne lesions. PLoS One. 2014 9(8):e105238.

  11. Rainer BM, Kang S, Chien AL. Rosacea: epidemiology, pathogenesis, and treatment. Dermatoendocrinol. 2017 9(1):e1361574.

  12. Heisig M, Reich A. Psychosocial aspects of rosacea with a focus on anxiety and depression. Clin Cosmet Investig Dermatol. 2018 11:103-7.

  13. Tan J, Almeida LM, Bewley A, et al. Updating the diagnosis, classification and assessment of rosacea: recommendations from the global ROSacea COnsensus (ROSCO) panel. Br J Dermatol. 2017 Feb;176(2):431-8.

  14. Gallo RL, Granstein RD, Kang S, et al. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018 Jan;78(1):148-55.

  15. Schaller M, Almeida LMC, Bewley A, et al. Recommendations for rosacea diagnosis, classification and management: update from the global ROSacea COnsensus 2019 panel. Br J Dermatol. 2020 May;182(5):1269-76.

  16. Asai Y, Tan J, Baibergenova A, et al. Canadian clinical practice guidelines for rosacea. J Cutan Med Surg. 2016 Sep;20(5):432-45.

  17. Aksoy B, Ekiz O, Unal E, et al. Systemic comorbidities associated with rosacea: a multicentric retrospective observational study. Int J Dermatol. 2019 Jun;58(6):722-8.

  18. Holmes AD, Spoendlin J, Chien AL, et al. Evidence-based update on rosacea comorbidities and their common physiologic pathways. J Am Acad Dermatol. 2018 Jan;78(1):156-66.

  19. Ogé LK, Muncie HL, Phillips-Savoy AR. Rosacea: diagnosis and treatment. Am Fam Physician. 2015 Aug 1;92(3):187-96.

  20. Tan J, Berg M, Gallo RL, et al. Applying the phenotype approach for rosacea to practice and research. Br J Dermatol. 2018 Sep;179(3):741-6.

  21. van Zuuren EJ, Fedorowicz Z, Tan J, et al. Interventions for rosacea based on the phenotype approach: an updated systematic review including GRADE assessments. Br J Dermatol. 2019 Jul;181(1):65-79.

  22. Fowler J, Jr., Jackson M, Moore A, et al. Efficacy and safety of once-daily topical brimonidine tartrate gel 0.5% for the treatment of moderate to severe facial erythema of rosacea: results of two randomized, double-blind, and vehicle-controlled pivotal studies. J Drugs Dermatol. 2013 Jun 1;12(6):650-6.

  23. Baumann L, Goldberg DJ, Stein Gold L, et al. Pivotal trial of the efficacy and safety of oxymetazoline cream 1.0% for the treatment of persistent facial erythema associated with rosacea: findings from the second REVEAL trial. J Drugs Dermatol. 2018 Mar 1;17(3):290-8.

  24. Kircik LH, DuBois J, Draelos ZD, et al. Pivotal trial of the efficacy and safety of oxymetazoline cream 1.0% for the treatment of persistent facial erythema associated with rosacea: findings from the first REVEAL trial. J Drugs Dermatol. 2018 Jan 1;17(1):97-105.

  25. Docherty JR, Steinhoff M, Lorton D, et al. Multidisciplinary consideration of potential pathophysiologic mechanisms of paradoxical erythema with topical brimonidine therapy. Adv Ther. 2016 Nov;33(11):1885-95.

  26. Del Rosso JQ. Topical a-agonist therapy for persistent facial erythema of rosacea and the addition of oxmetazoline to the treatment armamentarium: where are we now? J Clin Aesthet Dermatol. 2017 Jul;10(7):28-32.

  27. Draelos ZD, Elewski BE, Harper JC, et al. A phase 3 randomized, double-blind, vehicle-controlled trial of azelaic acid foam 15% in the treatment of papulopustular rosacea. Cutis. 2015 Jul;96(1):54-61.

  28. Draelos ZD, Elewski B, Staedtler G, et al. Azelaic acid foam 15% in the treatment of papulopustular rosacea: a randomized, double-blind, vehicle-controlled study. Cutis. 2013 Dec;92(6):306-17.

  29. Elewski BE, Fleischer AB, Jr., Pariser DM. A comparison of 15% azelaic acid gel and 0.75% metronidazole gel in the topical treatment of papulopustular rosacea: results of a randomized trial. Arch Dermatol. 2003 Nov;139(11):1444- 50.

  30. Maddin S. A comparison of topical azelaic acid 20% cream and topical metronidazole 0.75% cream in the treatment of patients with papulopustular rosacea. J Am Acad Dermatol. 1999 Jun;40(6 Pt 1):961-5.

  31. Wolf JE, Jr., Kerrouche N, Arsonnaud S. Efficacy and safety of once-daily metronidazole 1% gel compared with twice-daily azelaic acid 15% gel in the treatment of rosacea. Cutis. 2006 Apr;77(4 Suppl):3-11.

  32. Stein L, Kircik L, Fowler J, et al. Efficacy and safety of ivermectin 1% cream in treatment of papulopustular rosacea: results of two randomized, double-blind, vehicle-controlled pivotal studies. J Drugs Dermatol. 2014 Mar;13(3):316-23.

  33. Taieb A, Ortonne JP, Ruzicka T, et al. Superiority of ivermectin 1% cream over metronidazole 0.75% cream in treating inflammatory lesions of rosacea: a randomized, investigator-blinded trial. Br J Dermatol. 2015 Apr;172(4):1103- 10.

  34. Sbidian E, Vicaut E, Chidiack H, et al. A randomized-controlled trial of oral low-dose isotretinoin for difficult-to-treat papulopustular rosacea. J Invest Dermatol. 2016 Jun;136(6):1124-9.

  35. Gollnick H, Blume-Peytavi U, Szabo EL, et al. Systemic isotretinoin in the treatment of rosacea – doxycycline- and placebo-controlled, randomized clinical study. J Dtsch Dermatol Ges. 2010 Jul;8(7):505-15.

  36. Bjerke, J, Nyfors, A, Austad, J, et al. Metronidazole (Elyzol) 1% cream v. placebo cream in the treatment of rosacea. Clin Trials J. 1989 Jan 1; 26(3):187-94.

  37. Breneman DL, Stewart D, Hevia O, et al. A double-blind, multicenter clinical trial comparing efficacy of once-daily metronidazole 1 percent cream to vehicle in patients with rosacea. Cutis. 1998 Jan;61(1):44-7.

  38. Nielsen PG. Treatment of rosacea with i% metronidazole cream. A double-blind study. Br J Dermatol. 1983 Mar;108(3):327-32.

  39. Mrowietz U, Kedem TH, Keynan R, et al. A phase II, randomized, double-blind clinical study evaluating the safety, tolerability, and efficacy of a topical minocycline foam, FMX103, for the treatment of facial papulopustular rosacea. Am J Clin Dermatol. 2018 Jun;19(3):427-36.

  40. Di Nardo A, Holmes AD, Muto Y, et al. Improved clinical outcome and biomarkers in adults with papulopustular rosacea treated with doxycycline modified-release capsules in a randomized trial. J Am Acad Dermatol. 2016 Jun;74(6):1086-92.

  41. Marks R, Ellis J. Comparative effectiveness of tetracycline and ampicillin in rosacea. A controlled trial. Lancet. 1971 Nov 13;2(7733):1049-52.

  42. Sneddon IB. A clinical trial of tetracycline in rosacea. Br J Dermatol. 1966 Dec;78(12):649-52.

  43. Martel P, Jarratt M, Weiss J, et al. Lack of significant anti-inflammatory activity with clindamycin in the treatment of rosacea: results of 2 randomized, vehicle-controlled trials. Cutis. 2017 Jul;100(1):53-8.

  44. van der Linden MMD, van Ratingen AR, van Rappard DC, et al. DOMINO, doxycycline 40 mg vs. minocycline 100 mg in the treatment of rosacea: a randomized, single-blinded, noninferiority trial, comparing efficacy and safety. Br J Dermatol. 2017 Jun;176(6):1465-74.

  45. Akhyani M, Ehsani AH, Ghiasi M, et al. Comparison of efficacy of azithromycin vs. doxycycline in the treatment of rosacea: a randomized open clinical trial. Int J Dermatol. 2008 Mar;47(3):284-8.

  46. Del Rosso JQ, Schlessinger J, Werschler P. Comparison of anti-inflammatory dose doxycycline versus doxycycline 100 mg in the treatment of rosacea. J Drugs Dermatol. 2008 Jun;7(6):573-6.

  47. Bhargava R, Chandra M, Bansal U, et al. A randomized controlled trial of omega 3 fatty acids in rosacea patients with dry eye symptoms. Curr Eye Res. 2016 Oct;41(10):1274-80.

  48. Schechter BA, Katz RS, Friedman LS. Efficacy of topical cyclosporine for the treatment of ocular rosacea. Adv Ther. 2009 Jun;26(6):651-9.

  49. Arman A, Demirseren DD, Takmaz T. Treatment of ocular rosacea: comparative study of topical cyclosporine and oral doxycycline. Int J Ophthalmol. 2015 8(3):544-9.

  50. Gold LS, Papp K, Lynde C, et al. Treatment of rosacea with concomitant use of topical ivermectin 1% cream and brimonidine 0.33% gel: a randomized, vehicle-controlled study. J Drugs Dermatol. 2017 Sep 1;16(9):909-16.

  51. Fowler JF, Jr. Combined effect of anti-inflammatory dose doxycycline (40-mg doxycycline, usp monohydrate controlled-release capsules) and metronidazole topical gel 1% in the treatment of rosacea. J Drugs Dermatol. 2007 Jun;6(6):641-5.

  52. Jackson JM, Kircik LH, Lorenz DJ. Efficacy of extended-release 45 mg oral minocycline and extended-release 45 mg oral minocycline plus 15% azelaic acid in the treatment of acne rosacea. J Drugs Dermatol. 2013 Mar;12(3):292-8.

  53. Chang AL, Alora-Palli M, Lima XT, et al. A randomized, double-blind, placebo-controlled, pilot study to assess the efficacy and safety of clindamycin 1.2% and tretinoin 0.025% combination gel for the treatment of acne rosacea over 12 weeks. J Drugs Dermatol. 2012 Mar;11(3):333-9.

  54. Stein Gold L, Kircik L, Fowler J, et al. Long-term safety of ivermectin 1% cream vs azelaic acid 15% gel in treating inflammatory lesions of rosacea: results of two 40-week controlled, investigator-blinded trials. J Drugs Dermatol. 2014 Nov;13(11):1380-6.

  55. Scheinfeld N, Berk T. A review of the diagnosis and treatment of rosacea. Postgrad Med. 2010 Jan;122(1):139-43.

  56. Izikson L, English JC, 3rd, Zirwas MJ. The flushing patient: differential diagnosis, workup, and treatment. J Am Acad Dermatol. 2006 Aug;55(2):193- 208.

  57. Egeberg A, Hansen PR, Gislason GH, et al. Clustering of autoimmune diseases in patients with rosacea. J Am Acad Dermatol. 2016 Apr;74(4):667-72 e1.

  58. Hua TC, Chung PI, Chen YJ, et al. Cardiovascular comorbidities in patients with rosacea: a nationwide case-control study from Taiwan. J Am Acad Dermatol. 2015 Aug;73(2):249-54.

  59. Spoendlin J, Karatas G, Furlano RI, et al. Rosacea in patients with ulcerative colitis and Crohn’s disease: d population-based case-control study. Inflamm Bowel Dis. 2016 Mar;22(3):680-7.

  60. Kim M, Choi KH, Hwang SW, et al. Inflammatory bowel disease is associated with an increased risk of inflammatory skin diseases: a population-based cross-sectional study. J Am Acad Dermatol. 2017 Jan;76(1):40-8.

  61. Rainer BM, Fischer AH, Luz Felipe da Silva D, et al. Rosacea is associated with chronic systemic diseases in a skin severity-dependent manner: results of a case-control study. J Am Acad Dermatol. 2015 Oct;73(4):604-8.

  62. Wu Y, Fu C, Zhang W, et al. The dermatology life quality index (DLQI) and the hospital anxiety and depression (HADS) in Chinese rosacea patients. Psychol Health Med. 2018 Apr;23(4):369-74.

  63. Spoendlin J, Voegel JJ, Jick SS, et al. Migraine, triptans, and the risk of developing rosacea: a population-based study within the United Kingdom. J Am Acad Dermatol. 2013 Sep;69(3):399-406.


Purchase Article PDF for $1.99

]]>